

Harvard AM111 2017 Fall

Course Name: Applied Math 111, Introduction to Scientific Computing

Instructor: Prof. Robin Wordsworth (rwordsworth@seas.harvard.edu), 426 Geological Museum

Teaching Fellow: Jiawei Zhuang (jiaweizhuang@g.harvard.edu), Pierce Hall 108

Lecture Time: Tues/Thurs 13:00-14:30

Lecture Location: 375 Geological Museum (3rd floor)

Session Time: Every Monday 17:00-18:00

Session Location: GeoMuseum 103A

TF’s Office Hour: Every Tuesday 15:00-16:00, Pierce Hall 108

This website contains supplemental materials made by the TF, Jiawei Zhuang.
These materials are not required for completing this course,
but just provide additional information I find useful. Might also use them for the session.
Your grade will not be affected if you choose to ignore this website.

Homework Notes

Additional notes (hints, clarifications) for homework.

	Notes on Homework 1

Lecture & Session Notes

Forget the coding exercises in the class? The following notes might help.

	Lecture 2: Logic Gates & Fibonacci Numbers

	Lecture 4: Floats & Random Numbers

	Lecture 5: Random Numbers & Complex Numbers

	Lecture 6: Matrix

	Lecture 8: Interpolation

	Lecture 11: Odyssey!!!

	Session 1: MATLAB Functions and Scripts

	Session 2: Speed-up your code by vectorization

	Session 3: LU Factorization & Markov Process

	Session 4: Linux Command Line

	Session 5: MATLAB backslash & some pitfalls

	Session 6: Three ways of differentiation

	Session 7: Error convergence of numerical methods

	Session 8: ODE stability; stiff system

	Session 9: Partial differential equation

	Session 10: Fast Fourier Transform

These notes combine codes and results together. You can just copy the codes to your MATLAB console or script.

If you wonder how I wrote codes in this format and want to try it yourself, see the section below.

MATLAB in Jupyter Notebooks

This course is taught in MATLAB. One thing you could try is to run MATLAB codes in Jupyter Notebooks [http://jupyter.org].
Jupyter Notebook is a must-learn tool for data scientists, and it is also becoming popular in the traditional
scientific computing community.
It is a great tool for interactive computing and
allows you to combine codes, simulation results, and descriptions such as latex equations in a single file.

See how to install and use it at:

	Install Jupyter-MATLAB

	Use MATLAB in Jupyter Notebooks

Some basic understanding of Linux command line and Python will be useful for installation.
If you are just new to programming, you should simply use MATLAB’s original, basic user interface
and come back to this tutorial later when you are interested.

If you feel good about this tool, you can choose to submit notebooks for your homework,
Again, your grade will not be affected by the file format of your homework.

Notes on Homework 1

In [1]:

format compact

The last question asks you to use boolean_print_TT_fn.m
(available on canvas) to print the truth table. Please read this
additional note if you have trouble using this function.

Function as an input variable

Typically you pass data (e.g. scalars, arrays…) to a function. But the
function boolean_print_TT_fn() accepts another function as the
input variable.

Inline function as an input variable

Let’s make two inline functions:

In [2]:

func1 = @(a) a;
func2 = @(a,b) a&b;

boolean_print_TT_fn(func,1) prints the truth table for a function
with a single input:

In [3]:

boolean_print_TT_fn(func1,1)

a|out
0|0
1|1

boolean_print_TT_fn(func,2) prints the truth table for a function
with two inputs:

In [4]:

boolean_print_TT_fn(func2,2)

a|b|out
0|0| 0
0|1| 0
1|0| 0
1|1| 1

Standard function as an input variable

However, if you try to pass a standard function (i.e. defined in a
separate file) to boolean_print_TT_fn(), it will throw you some
weird error:

In [5]:

%%file func2_fn.m
function s=func2_fn(a,b)
 s = a&b;
end

Created file '/Users/zhuangjw/Research/Computing/personal_web/AM111/docs/func2_fn.m'.

In [6]:

boolean_print_TT_fn(func2_fn,2)

Not enough input arguments.
Error in func2_fn (line 2)
 s = a&b;

To fix this error, you can put @ in front of your function, as
suggested
here [https://www.mathworks.com/help/matlab/matlab_prog/pass-a-function-to-another-function.html].

In [7]:

boolean_print_TT_fn(@func2_fn,2)

a|b|out
0|0| 0
0|1| 0
1|0| 0
1|1| 1

(That’s MATLAB-specific design. Other languages like Python treat inline
and standard functions in the same way.)

Print truth table for half adder

Function with multiple return

A Half adder has two return values. One way to return multiple values is

In [8]:

%%file multi_return.m
function [carry,s] = multi_return(a,b)
 % This is not a corret adder! You should write your own!
 carry = 0;
 s = 1;
end

Created file '/Users/zhuangjw/Research/Computing/personal_web/AM111/docs/multi_return.m'.

However, by default you only get the first output variable carry !

In [9]:

multi_return(0,0)

ans =
 0

To get both carry and s, you have to use two variables to hold
the output results.

In [10]:

[out1, out2] = multi_return(0,0)

out1 =
 0
out2 =
 1

A perhaps more convenient way is to return a vector containing all
outputs you need:

In [11]:

%%file fake_half_adder.m
function out = fake_half_adder(a,b)
 % This is not a corret adder! You should write your own!
 carry = 0;
 s = 1;
 out = [carry,s];
end

Created file '/Users/zhuangjw/Research/Computing/personal_web/AM111/docs/fake_half_adder.m'.

This time, you don’t have to write two variables to hold the output
results:

In [12]:

fake_half_adder(1,1)

ans =
 0 1

Print truth table using boolean_print_TT_fn.m

boolean_print_TT_fn() will print the complete result only if you
use a single vector as the return value for you adder. Use 3 to get
the format for half-adder.

In [13]:

boolean_print_TT_fn(@multi_return,3) % not printing complete result

a|b|carry|sum
0|0| 0
0|1| 0
1|0| 0
1|1| 0

In [14]:

boolean_print_TT_fn(@fake_half_adder,3) % can print complete result

a|b|carry|sum
0|0| 0 1
0|1| 0 1
1|0| 0 1
1|1| 0 1

Print truth table on your own

If you don’t want to use boolean_print_TT_fn.m, it is also quite
straightforward to print the table on your own:

In [15]:

disp('a,b|c,s')
for a=0:1
for b=0:1
 fprintf('%d,%d|%d,%d \n',a,b,fake_half_adder(a,b))
end
end

a,b|c,s
0,0|0,1
0,1|0,1
1,0|0,1
1,1|0,1

Type doc fprintf to see more formatting options.

Print truth table for full adder

Use 4 to get the format for full-adder.

In [16]:

%%file fake_full_adder.m
function out = fake_full_adder(a,b,c)
 carry = 0;
 s = 1;
 out = [carry,s];
end

Created file '/Users/zhuangjw/Research/Computing/personal_web/AM111/docs/fake_full_adder.m'.

In [17]:

boolean_print_TT_fn(@fake_full_adder,4)

a|b|c|carry|sum
0|0|0|0 1
0|0|1|0 1
0|1|0|0 1
0|1|1|0 1
1|0|0|0 1
1|0|1|0 1
1|1|0|0 1
1|1|1|0 1

Lecture 2: Logic Gates & Fibonacci Numbers

Date: 09/05/2017, Tuesday

In [1]:

format compact

Logic gates

nand gate

In [2]:

nand = @(a,b) ~(a&b)

nand =
 function_handle with value:
 @(a,b)~(a&b)

In [3]:

nand(1,1) % test if it works

ans =
 logical
 0

print truth table

In [4]:

help boolean_print_TT_fn % boolean_print_TT_fn.m is available on canvas

 boolean_print_TT_fn.m
 a function to print the boolean truth table for a given
 supplied function 'func'

 INPUT
 func: the supplied function (e.g. OR, NAND, XOR)
 input_num: number of inputs

In [5]:

boolean_print_TT_fn(nand,2)

a|b|out
0|0| 1
0|1| 1
1|0| 1
1|1| 0

build “not” gate from “nand” gate

In [6]:

my_not = @(a) nand(a,a) % "not" is a built-in function so we use my_not to avoid conflicts

my_not =
 function_handle with value:
 @(a)nand(a,a)

In [7]:

boolean_print_TT_fn(my_not,1)

a|out
0|1
1|0

Why nand(a,a) means not:

	and(a,a) = a, no matter a is 0 or 1

	nand(a,a) = not and(a,a) = not a

Fibonacci Sequence

generate Fibonacci sequences

In [8]:

%%file fib_fn.m
function F = fib_fn(n)

 F = zeros(1,n);
 F(1)=1;
 F(2)=1;
 for j=3:n
 F(j)=F(j-1)+F(j-2);
 end

end

Created file '/Users/zhuangjw/Research/Computing/personal_web/AM111/docs/fib_fn.m'.

In [9]:

fib_fn(10)

ans =
 1 1 2 3 5 8 13 21 34 55

Compare with the built-in function fibonacci()

In [10]:

fibonacci(1:10)

ans =
 1 1 2 3 5 8 13 21 34 55

golden ratio

In [11]:

golden_ratio = (sqrt(5)+1)/2 % true value

golden_ratio =
 1.6180

\(F_n/F_{n-1}\) Converges to the golden ratio

In [12]:

F = fib_fn(10);
F_ratio = F(2:end)./F(1:end-1)

F_ratio =
 Columns 1 through 7
 1.0000 2.0000 1.5000 1.6667 1.6000 1.6250 1.6154
 Columns 8 through 9
 1.6190 1.6176

In [13]:

%plot --size 400,300
hold on
plot(F_ratio,'-o')
plot([0,10],[golden_ratio,golden_ratio])

[image: _images/lecture2_logics_fib_23_0.png]

Lecture 4: Floats & Random Numbers

Date: 09/12/2017, Tuesday

In [1]:

format compact
format long % print more digits

Floating point number system

Double precision:

\[\begin{split}x = \pm(1+f)2^e \\
0 \le 2^{t}f<2^{t}, t=52 \\
-1022 \le e \le 1023\end{split}\]

(See lecture slides or textbook for more explantion. This website
focuses on codes.)

About parameters

How many binary bits are needed to store \(e\):

In [2]:

log2(2048)

ans =
 11

Maximum value

Calculate the maximum value of \(x\) from the formula.

In [3]:

t=52;
f=(2^t-1)/2^t;
(1+f)*2^1023

ans =
 1.797693134862316e+308

Compare with the built-in function

In [4]:

realmax

ans =
 1.797693134862316e+308

What happens if the value exceeds realmax?

In [5]:

2e308

ans =
 Inf

Minimum (absolute) value

From the formula

In [6]:

2^-1022

ans =
 2.225073858507201e-308

Compare with the built-in function

In [7]:

realmin

ans =
 2.225073858507201e-308

MATLAB allows you to go lower than realmin, but no too much.

In [8]:

for k=-321:-1:-325
 fprintf('k = %d, 10^k = %e \n',k,10^k)
end

k = -321, 10^k = 9.980126e-322
k = -322, 10^k = 9.881313e-323
k = -323, 10^k = 9.881313e-324
k = -324, 10^k = 0.000000e+00
k = -325, 10^k = 0.000000e+00

\(10^{-323}\) can be scaled up:

In [9]:

1e-323 * 1e300

ans =
 9.881312916824931e-24

But \(10^{-324}\) can’t, as it becomes exactly 0.

In [10]:

1e-324 * 1e300

ans =
 0

Machine precision

Compute machine precision

From the formula \(0 \le 2^{t}f<2^{t}, t=52\)

In [11]:

2^(-52)

ans =
 2.220446049250313e-16

Built-in function:

In [12]:

eps

ans =
 2.220446049250313e-16

Another ways to get eps

In [13]:

1.0-(0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1) % equals to eps/2

ans =
 1.110223024625157e-16

In [14]:

7/3-4/3-1 % equals to eps

ans =
 2.220446049250313e-16

Difference between eps and realmin

realmin is about abosolute magnitude, while eps is about
relative accuracy. Although a double-precision number can represent
a value as small as \(10^{-323}\) (i.e. realmin), the relative
error of arithmetic operations can be as large as \(10^{-16}\) (i.e.
eps).

Adding \(10^{-16}\) to 1.0 has no effect at all.

In [15]:

1.0+1e-16-1.0

ans =
 0

Adding \(10^{-15}\) to 1.0 has some effect, although the result is
quite inaccurate.

In [16]:

1.0+1e-15-1.0

ans =
 1.110223024625157e-15

Not a number

In [17]:

0/0

ans =
 NaN

In [18]:

Inf - Inf

ans =
 NaN

However, Inf can sometimes be meaningful: (MATLAB-only. Not true in
low-level languages.)

In [19]:

5/Inf

ans =
 0

In [20]:

5/0

ans =
 Inf

Random numbers

Linear congruential
generator [https://en.wikipedia.org/wiki/Linear_congruential_generator]

In [21]:

a = 22695477;
c = 1;
m = 2^32;
N = 2000;

X = zeros(N,1);
X(1) = 1000;
for j=2:N
 X(j)=mod(a*X(j-1)+c,m);
end

R = X/m;

Hmm… looks pretty random🤔

In [22]:

%plot --size 600,200
plot(R);

[image: _images/lecture4_float_48_0.png]

The data also looks like evenly-distributed.

In [23]:

nbins = 25;
histogram(R, nbins);

[image: _images/lecture4_float_50_0.png]

Lecture 5: Random Numbers & Complex Numbers

Date: 09/14/2017, Thursday

In [1]:

format compact

Built-in random number generator

rand returns a random number between [0,1] (uniform distribution).

In [2]:

rand

ans =
 0.8147

rand(N) returns a \(N \times N\) random matrix. You can always
type doc rand or help rand to see the detailed usage.

In [3]:

rand(5)

ans =
 0.9058 0.2785 0.9706 0.4218 0.0357
 0.1270 0.5469 0.9572 0.9157 0.8491
 0.9134 0.9575 0.4854 0.7922 0.9340
 0.6324 0.9649 0.8003 0.9595 0.6787
 0.0975 0.1576 0.1419 0.6557 0.7577

randi(N) returns an integer between 1 and N.

In [4]:

randi(100)

ans =
 75

randn uses normal distribution, instead of uniform distribution.

In [5]:

randn(5)

ans =
 -0.3034 -1.0689 -0.7549 0.3192 0.6277
 0.2939 -0.8095 1.3703 0.3129 1.0933
 -0.7873 -2.9443 -1.7115 -0.8649 1.1093
 0.8884 1.4384 -0.1022 -0.0301 -0.8637
 -1.1471 0.3252 -0.2414 -0.1649 0.0774

Complex numbers

Complex number basics

A real number (double-precision) takes 8 Bytes (64 bits). A complex
number is a pair of numbers so simply takes 16 Bytes (128 bits)

In [6]:

x = 3;
y = 4;
z = x+i*y;

In [7]:

whos

 Name Size Bytes Class Attributes

 ans 5x5 200 double
 x 1x1 8 double
 y 1x1 8 double
 z 1x1 16 double complex

Take conjugate of a complex number:

In [8]:

conj(z)

ans =
 3.0000 - 4.0000i

Show the number on the complex plane

In [9]:

%plot --size 300,300
hold on
complex_number_plot_fn(conj(z)/5,'r') % complex_number_plot_fn is available on canvas.
complex_number_plot_fn(z/5,'b')

[image: _images/lecture5_complex_19_0.png]

3 equivalent ways to compute \(|z|\)

In [10]:

abs(z)

ans =
 5

In [11]:

sqrt(dot(z,z))

ans =
 5

In [12]:

norm(z)

ans =
 5

The angle of z in degree:

In [13]:

angle(z) / pi * 180.0

ans =
 53.1301

Euler’s Formula

\[e^{i\theta} = \cos(\theta) + i\sin(\theta)\]

Verify that MATLAB understands \(e^{i\theta}\)

In [14]:

theta = linspace(0, 2*pi, 1e4);
z = exp(i*theta); % now z is an array, not a scalar as defined in the previou section.

In [15]:

%plot --size 600,300
hold on
plot(theta,real(z))
plot(theta,imag(z))

[image: _images/lecture5_complex_29_0.png]

Mandelbrot set

Iteration with a single parameter

In [16]:

c = rand-0.5 + i*(rand-0.5);

T = 50;
z_arr = zeros(T,1); % to hold the entire time series

z = 0; % initial value
z_arr(1) = z;

for t=2:T
 z = z^2+c;
 z_arr(t) = z;
end

In [17]:

hold on
plot(real(z_arr))
plot(imag(z_arr))

[image: _images/lecture5_complex_33_0.png]

Run this code repeatedly, you will see sometimes \(z\) will blow up,
sometime not, according to the initial value of \(c\). Thus we want
to figure out what values of \(c\) will make \(z\) blow up.

Iteration with the entire paremeter space

We want to construct a 2D array containing all possible values of
\(c\) on the complex plane.

Let’s make 1D grids first.

In [18]:

nx = 100;
xm = 1.75;
x = linspace(-xm, xm, nx);
y = linspace(-xm, xm, nx);

In [19]:

size(x), size(y)

ans =
 1 100
ans =
 1 100

convert 1D grid to 2D grid.

In [20]:

[Cr, Ci] = meshgrid(x,y);

In [21]:

size(Cr), size(Ci)

ans =
 100 100
ans =
 100 100

In [22]:

C = Cr + i*Ci; % now C spans over the complex plane

In [23]:

size(C)

ans =
 100 100

Run the iteration for every value of C

In [24]:

T = 50;

Z_final = zeros(nx,nx); % to hold last value of z, at all possible points.

for ix = 1:nx
for iy = 1:nx % we also have nx points in the y-direction

 % get the value of c at current point.
 % note that MATLAB is case-sensitive
 c = C(ix,iy);

 z = 0; % initial value, doesn't matter too much
 for t=2:T
 z = z^2+c;
 end
 Z_final(ix,iy) = z; % save the last value of z

end
end

Here’s one way to visualize the result.

In [25]:

pcolor(abs(Z_final)); % plot the magnitude of z

shading flat; % hide grids
colormap jet; % change colormap
colorbar; % show colorbar

% The default color range is min(z)~max(z),
% but max(z) is almost Inf so we make the range smaller
caxis([0,2]);

[image: _images/lecture5_complex_47_0.png]

Lecture 6: Matrix

Date: 09/19/2017, Tuessday

In [1]:

format compact

Matrix operation basics

Making a magic square [https://en.wikipedia.org/wiki/Magic_square]

In [2]:

A = magic(3)

A =
 8 1 6
 3 5 7
 4 9 2

Take transpose

In [3]:

A'

ans =
 8 3 4
 1 5 9
 6 7 2

Rotate by 90 degree. (Not so useful for linear algebra. Could be useful
for image processing.)

In [4]:

rot90(A')

ans =
 4 9 2
 3 5 7
 8 1 6

Sum over each column

In [5]:

sum(A)

ans =
 15 15 15

Another equivalent way

In [6]:

sum(A, 1)

ans =
 15 15 15

Sum over each row

In [7]:

sum(A, 2)

ans =
 15
 15
 15

Extract the diagonal elements.

In [8]:

diag(A)

ans =
 8
 5
 2

The sum of diagonal elements is also 15, by the definition of a magic
square.

In [9]:

sum(diag(A))

ans =
 15

Determinant

In [10]:

det(A)

ans =
 -360

Matrix inversion \(A^{-1}\)

In [11]:

inv(A)

ans =
 0.1472 -0.1444 0.0639
 -0.0611 0.0222 0.1056
 -0.0194 0.1889 -0.1028

Built-in image for magic square

In [12]:

load durer
image(X)
colormap(map)
axis image

[image: _images/lecture6_matrix_24_0.png]

In [13]:

load detail
image(X)
colormap(map)
axis image

[image: _images/lecture6_matrix_25_0.png]

Vector norms

In [14]:

x = 1:5 % make a boring vector

x =
 1 2 3 4 5

Calculate p-norm from formula

In [15]:

my_norm = @(x,p) (sum(abs(x).^p))^(1/p)

my_norm =
 function_handle with value:
 @(x,p)(sum(abs(x).^p))^(1/p)

Check if it works.

In [16]:

my_norm(x,1)

ans =
 15

As p increases, the norm converges to \(\max(|x|)\)

In [17]:

for p=1:10
 my_norm(x,p)
end

ans =
 15
ans =
 7.4162
ans =
 6.0822
ans =
 5.5937
ans =
 5.3602
ans =
 5.2321
ans =
 5.1557
ans =
 5.1073
ans =
 5.0756
ans =
 5.0541

It blows up at \(p=442\) because \(5^{442}\) exceeds the
realmin.

In [18]:

my_norm(x,441), my_norm(x,442)

ans =
 5
ans =
 Inf

In [19]:

5^441

ans =
 1.7611e+308

In [20]:

5^442

ans =
 Inf

Built-in function norm works for large numbers, though. Think about
why.

In [21]:

norm(x,441), norm(x,442)

ans =
 5
ans =
 5

Conditioning

4x4 magic square

In [22]:

B = magic(4)

B =
 16 2 3 13
 5 11 10 8
 9 7 6 12
 4 14 15 1

It is singular and ill-conditioned.

In [23]:

inv(B)

Warning: Matrix is close to singular or badly scaled. Results may be inaccurate. RCOND = 4.625929e-18.
ans =
 1.0e+15 *
 -0.2649 -0.7948 0.7948 0.2649
 -0.7948 -2.3843 2.3843 0.7948
 0.7948 2.3843 -2.3843 -0.7948
 0.2649 0.7948 -0.7948 -0.2649

In [24]:

det(B)

ans =
 5.1337e-13

In [25]:

cond(B)

ans =
 4.7133e+17

Use 1-norm instead. All norms should have similar order of magnitude.

In [26]:

cond(B,1)

Warning: Matrix is close to singular or badly scaled. Results may be inaccurate. RCOND = 4.625929e-18.
> In cond (line 46)
ans =
 2.1617e+17

The condition number reaches 1/eps, leading to large numerical
error.

In [27]:

1/eps

ans =
 4.5036e+15

Sparse matrix

In [28]:

A = eye(10)

A =
 1 0 0 0 0 0 0 0 0 0
 0 1 0 0 0 0 0 0 0 0
 0 0 1 0 0 0 0 0 0 0
 0 0 0 1 0 0 0 0 0 0
 0 0 0 0 1 0 0 0 0 0
 0 0 0 0 0 1 0 0 0 0
 0 0 0 0 0 0 1 0 0 0
 0 0 0 0 0 0 0 1 0 0
 0 0 0 0 0 0 0 0 1 0
 0 0 0 0 0 0 0 0 0 1

Store it in the sparse form saves memory.

In [29]:

As = sparse(A)

As =
 (1,1) 1
 (2,2) 1
 (3,3) 1
 (4,4) 1
 (5,5) 1
 (6,6) 1
 (7,7) 1
 (8,8) 1
 (9,9) 1
 (10,10) 1

Use whos A and whos As to check memory usage.

Visualize sparsity. Also works for As

In [30]:

spy(A)

[image: _images/lecture6_matrix_57_0.png]

Lecture 8: Interpolation

Date: 09/26/2017, Tuessday

In [1]:

format compact

A simple example

Make 3 data points

In [2]:

xp = [-pi/2, 0, pi/2];
yp = [-1, 0, 1];

The two functions below both go through the 3 data points.

In [3]:

f = @(x) sin(x);
g = @(x) 2*x/pi;

There are ways to plot a function symbolically/analytically (for
example [https://www.mathworks.com/help/symbolic/ezplot.html]), but
those methods have a lot of limitations and you don’t have detailed
controls on them.

So we stick to the most standard way of plotting: evaluate the function
value on a lot of points to make the line look smooth.

In [4]:

x = linspace(-2,2,1e3); % a 1000 grid points from -2 to 2

Always remember to surpress the output (by ;) when defining this
kind of large array. MATLAB WILL print all the elements in an
array/matrix no matter how large it is. Sometimes your program will die
just because it wants to print \(10^{10}\) numbers.

Now we can plot the functions and data points.

In [5]:

%plot --size 300,200
hold on
plot(xp,yp,'o')
plot(x,f(x))
plot(x,g(x))
legend('data','sin(x)','2x/\pi','Location','northwest')

[image: _images/lecture8_interpolation_10_0.png]

Polynomial interpolation

In [6]:

% make some data points
n = 5;
px = [0 1 2 3 4];
py = [1 2 2 6 9];

n data point can be precisely fitted by a n-1 degree polynomial
\(p=c_1+c_2x+...+c_nx^{n-1}\).

The coffeicients \(c=[c_1,c_2,...c_n]^T\) satisfy the equation

\[Vc=y\]

where \(y=[y_1,y_2,...,y_n]^T\) is the data points you want to fit,
and V is the vandermode
matrix [https://en.wikipedia.org/wiki/Vandermonde_matrix] only
containing powers of \(x_k\), the data points.

In [7]:

% calculate the vander matrix by loop
V = zeros(n);
for j=1:5
 V(:,j) = px.^(j-1);
end
V

V =
 1 0 0 0 0
 1 1 1 1 1
 1 2 4 8 16
 1 3 9 27 81
 1 4 16 64 256

The built-in vander is flipped left-right. Both forms are correct as
long as your algorithm is consistent with the matrix.

In [8]:

vander(px)

ans =
 0 0 0 0 1
 1 1 1 1 1
 16 8 4 2 1
 81 27 9 3 1
 256 64 16 4 1

Now we can solve \(Vc=y\) by \(c=V^{-1}y\). In MATLAB backslash
form it is c=V\y. Note that the actual code never computes
\(V^{-1}\), but use something like LU factorization/Gaussian
elimination to solve the system. (it is almost always a bad idea to
compute the inverse of a matrix). But thinking about \(V^{-1}y\)
helps you to remember the order of V and y in the command (e.g. is it
V\y or y\V ?).

The code below throws an error because y is a row vector.

In [9]:

c = V\py

Error using \
Matrix dimensions must agree.

You need a column vector on the right side, just like how you write the
equation mathematically.

In [10]:

c = V\py'

c =
 1.0000
 5.6667
 -7.5833
 3.3333
 -0.4167

Now we have the coefficients \(c\), we can write the polynomial
\(p=c_1+c_2x+...+c_nx^{n-1}\) as a MATLAB function.

Here’s a naive way to evaluate the polynomial. You should write a loop
instead. Also consider Horner’s
method [https://en.wikipedia.org/wiki/Horner%27s_method] to achieve
optimal performance.

In [11]:

my_ploy = @(c,x) c(1) + c(2)*x + c(3)*x.^2 + c(4)*x.^3 + c(5)*x.^4 ;

In [12]:

% evaluate the function on a lot of data points
xf = linspace(-1,5,100);
yf = my_ploy(c,xf);

In [13]:

%plot --size 400,200
hold on
plot(px,py,'o')
plot(xf,yf)
legend('data','interpolation','Location','southeast')

[image: _images/lecture8_interpolation_24_0.png]

Lecture 11: Odyssey!!!

Date: 10/05/2017, Thursday

You are expected to finish 8+1 tiny tasks. They will help you get
prepared for the final project!

Related resources:

	Ryans’s Linux
tutorial [https://ryanstutorials.net/linuxtutorial/]

	Intro-to-Odssey-S17_am111.pdf on Canvas.

	Odyssey quickstart
guide [https://www.rc.fas.harvard.edu/resources/odyssey-quickstart-guide/]

	MATLAB on
Odyssey [https://www.rc.fas.harvard.edu/resources/documentation/software/matlab/]

	Parallel MATLAB on
Odyssey [https://www.rc.fas.harvard.edu/resources/documentation/software/parallel-matlab-pct-dcs/]

Task 1: Command line on your laptop

Preparation

Read Session 4 note, especially Ryans’s
tutorial [https://ryanstutorials.net/linuxtutorial/] if you didn’t
come to Monday’s session.

After reading Chapter
1 [https://ryanstutorials.net/linuxtutorial/commandline.php] to
Chapter
5 [https://ryanstutorials.net/linuxtutorial/filemanipulation.php],
you should at least know the following Linux commands

	ls

	pwd

	mkdir

	cd

	mv

	rm and rm -rf

	cp and cp -r

If you choose vi/vim as your text editor, read Chapter
6 [https://ryanstutorials.net/linuxtutorial/vi.php]. Then you should
at least know the following vim commands

	i

	esc

	:wq

	:q!

Find your own tutorial if you choose other text editors.

Writing code in terminal

Task: Use vim or other command line text editer to create a matlab
file hello.m with the content “disp(‘hello world!’)”

We use vim as an example.

First, create a text file by

vim hello.m

(If hello.m already exists, then it will just open that file)

Inside vim, type i to enter the Insert Mode.

Then type the code as usual. For example

disp('hello world!')

After writting the content, type esc to go back to Command Mode.

Finally, type :wq to save and quit vim.

Again, read Chapter
6 [https://ryanstutorials.net/linuxtutorial/vi.php] for more vim
usages!

Tips: You can check the content of hello.m by a graphic editer. On
Mac, you can use open ./ to open the graphic finder, and then open
hello.m that you’ve just created. On Odyssey (See Task 2), there’s no
graphic editor, so you will also use vim to check the file content.

Running MATLAB interactively in terminal

Windows users can jump to Task 2 because I am not sure if the
following stuff would work.

Find the MATLAB executable path on your laptop. On Mac it should be
something like

/Applications/MATLAB_R2017a.app/bin/matlab

Running the above command will open the traditional graphic version of
MATLAB.

To only use the command line, add 3 options:

/Applications/MATLAB_R2017a.app/bin/matlab -nojvm -nosplash -nodesktop

Play with this command line version of MATLAB for a while. Type exit
to quit.

Set shortcut

If you are tired with typing this long command, you can set

alias matlab='/Applications/MATLAB_R2017a.app/bin/matlab'

Then you can simply type matlab to launch the program. However, this
shortcut will go away if you close the terminal. To make it a permanent
configuration, add the above command to a system file called
~/.bash_profile. You can edit it by vim for example:

vim ~/.bash_profile

Running MATLAB scripts in terminal

cd to the directory where you saved the hello.m file. You can
execute it by

matlab -nojvm -nosplash -nodesktop
hello

Or you can use ‘-r’ to combine two commands together

matlab -nojvm -nosplash -nodesktop -r hello

If you didn’t set shortcut, the full command would be

/Applications/MATLAB_R2017a.app/bin/matlab -nojvm -nosplash -nodesktop -r hello

(I actually prefer this command line version to the complicated graphic
version!)

Task 2: Command line on Odyssey

Login

Login to Odyssey by

ssh am111uXXXX@login.rc.fas.harvard.edu

Check Odyssey
website [https://www.rc.fas.harvard.edu/resources/access-and-login/]
if you have any trouble.

Tips: You can open multiple terminals and login to Odyssey, if one
is not enough for you.

Basic navigation

Repeat the basic Linux commands, but this time on Odyssey, not on
your laptop.

You should see Mac and Linux (Odyssey) commands are almost identical.

File transfer

Use scp

You can transfer files by the built-in scp (security-copy) command.
Make sure you are running this command on your laptop, not on
odyssey.

From you laptop to Odyssey (first figure out your Odyssey home directory
path by pwd)

scp local_file_path username@login.rc.fas.harvard.edu:/path_shown_by_pwd_on_Odyssey

Try to transfer *hello.m* that you wrote in Task 1 to Odyssey! You
will be asked to enter your password again.

From to Odyssey to your laptop is just reversing the arguments

scp username@login.rc.fas.harvard.edu:/file_path_on_odyssey local_file_path

Use scp -r for transfering directory (similar to cp -r)

Use other tools

Use
Filezilla [https://www.rc.fas.harvard.edu/resources/documentation/sftp-file-transfer/]
if you need to transfer a lot of file!

Task 3: MATLAB on Odyssey

Load MATLAB

Load MATLAB by

module load matlab

(If you get an error, run source new-modules.sh and try again.)

It loads the lastest version by default. You can check the version by
which

[username]$ which matlab
alias matlab='matlab -singleCompThread'
/n/sw/matlab-R2017a/bin/matlab

Or you can load a specific version

module load matlab/R2017a-fasrc01

Use this RC portal [https://portal.rc.fas.harvard.edu/apps/modules]
to find avaiable software and the corresponding loading command. Search
for MATLAB. How many different verions do you see?

Run MATLAB

After loading MATLAB, you can run it by: (same as on your laptop)

matlab -nojvm -nosplash -nodesktop

The 3 options are crucial because there’s no graphical user interface on
Odyssey.

Play with it, and type exit to quit.

Run hello.m by matlab -nojvm -nosplash -nodesktop -r hello.

Task 4: Interactive Job on Odyssey

After logging into Odyssey, you are on a home node with very few
computational resources. For any serious computing work you need to
switch to a compute node. The easiest way is to do this interactively
(more about interative
mode [https://www.rc.fas.harvard.edu/resources/running-jobs/#Interactive_jobs_and_srun]):

srun -t 0-0:30 -c 4 -N 1 --pty -p interact /bin/bash

Here we request 30 minutes of computing time (-t 0-0:30) on 4 CPUs
(-c 4), on a single computer (-N 1), using interactive mode
(--pty and /bin/bash).

Warning: Don’t request too many CPUs! This will make you wait for much
longer.

-p interact only means you are requesting CPUs on the interactive
partition, but doesn’t mean that you want it to run interactively. The
following command starts interactive mode on the general partition
(more about
partition [https://www.rc.fas.harvard.edu/resources/running-jobs/#SLURM_partitions]).

srun -t 0-0:30 -c 4 -N 1 --pty -p general /bin/bash

Then repeat what you’ve done in Task 3.

Task 5: Batch Job on Odyssey

If your job runs for hours or even days, you can submit it as a batch
job, so you don’t need to keep your terminal open all the time. You are
allowed to log out and go away while the job is runnning.

Create a file called runscript.sh with the following content. (you can
use vim to create such a text file)

#!/bin/bash
#SBATCH -J Matlabjob1
#SBATCH -p general
#SBATCH -c 1 # single CPU
#SBATCH -t 00:05:00
#SBATCH --mem=400M # memory
#SBATCH -o %j.o # output filename
#SBATCH -e %j.e # error filename

LOAD SOFTWARE ENV
source new-modules.sh
module purge
module load matlab/R2017a-fasrc01

EXECUTE CODE
matlab -nojvm -nodisplay -nosplash -r hello

It just puts the options you’ve used in Task 4 into a text file.

Make sure runscript.sh is at the same directory as hello.m, then
execute

sbatch runscript.sh

Use sacct to check job status. You should get some output files once
it is finished. (more about
submitting [https://www.rc.fas.harvard.edu/resources/running-jobs/#Submitting_batch_jobs_using_the_sbatch_command]
and
monitoring [https://www.rc.fas.harvard.edu/resources/running-jobs/#Summary_of_SLURM_commands]
jobs)

Tips: always test your code in interactive mode before submitting a
batch job!

Task 6: Use MATLAB-parallel on your laptop

Make sure you’ve installed the parallel toolbox. To start the command
line version, remove the -nojvm option when using parallel mode.
(The original graphic version works as usual)

matlab -nosplash -nodesktop

Initialize parallel mode by

In [1]:

parpool('local', 2)

Starting parallel pool (parpool) using the 'local' profile ...
connected to 2 workers.

ans =

 Pool with properties:

 Connected: true
 NumWorkers: 2
 Cluster: local
 AttachedFiles: {}
 IdleTimeout: 30 minutes (30 minutes remaining)
 SpmdEnabled: true

Then run this script for several times to make sure you get speed-up by
using parallel for-loop (parfor)

In [4]:

n = 1e9;

X = 0;
tic
for i = 1:n
 X = X + 1;
end
T = toc;
fprintf('serial time: %f; result: %d \n',T,X)

X = 0;
tic
parfor i = 1:n
 X = X + 1;
end
T = toc;
fprintf('parallel time: %f; result: %d \n',T,X)

serial time: 2.724932; result: 1000000000
parallel time: 1.748450; result: 1000000000

Tips: For command line version of MATLAB, save the code as
parallel_timing.m, and then execute parallel_timing inside
MATLAB.

Finally, quit the parallel mode

In [5]:

delete(gcp)

Task 7: Use MATLAB-parallel on Odyssey interactive mode

Repeat what you’ve done in Task 6, but on Odyssey. This might not be
as straightforward as you expected!

You need to request enough memory for the parallel tool box

srun -t 0-0:30 -c 4 -N 1 --mem-per-cpu 4000 --pty -p interact /bin/bash

Environment variable SLURM_CPUS_PER_TASK tells you how many CPUs
are available

echo $SLURM_CPUS_PER_TASK
4

For parallel support, you need to call matlab-default instead of
matlab to launch the program, as described
here [https://www.rc.fas.harvard.edu/resources/documentation/software/parallel-matlab-pct-dcs/].

module load matlab
matlab-default -nosplash -nodesktop

Inside MATLAB, you can again check the number of CPUs by

getenv('SLURM_CPUS_PER_TASK')
ans = '4'

Initialize parallel mode by (this is a general code for any number of
CPUs)

parpool('local', str2num(getenv('SLURM_CPUS_PER_TASK')))

The initialization might take severals minutes on Odyssey. Eventually
you should see something like

ans =

 Pool with properties:

 Connected: true
 NumWorkers: 4
 Cluster: local
 AttachedFiles: {}
 IdleTimeout: 30 minutes (30 minutes remaining)
 SpmdEnabled: true

Then, execute the parallel_timing.m script in Task 6. You should see
a speed-up like that

>> parallel_timing
serial time: 12.228084; result: 1000000000
parallel time: 2.667366; result: 1000000000

Task 8: MATLAB-parallel as batch Job

Sightly modify the script parallel_timing.m in Task 6. Call it
parallel_timing_batch.m this time.

parpool('local', str2num(getenv('SLURM_CPUS_PER_TASK')))

n = 1e9;

X = 0;
tic
for i = 1:n
 X = X + 1;
end
T = toc;
fprintf('serial time: %f; result: %d \n',T,X)

X = 0;
tic
parfor i = 1:n
 X = X + 1;
end
T = toc;
fprintf('parallel time: %f; result: %d \n',T,X)

X = 0;
tic
parfor i = 1:n
 X = X + 1;
end
T = toc;
fprintf('parallel time: %f; result: %d \n',T,X)

delete(gcp)

Then, change the runscript.sh in Task 5 correspondingly

#!/bin/bash
#SBATCH -J timing
#SBATCH -o timing.out
#SBATCH -e timing.err
#SBATCH -N 1
#SBATCH -c 4
#SBATCH -t 0-00:20
#SBATCH -p general
#SBATCH --mem-per-cpu 8000

source new-modules.sh
module load matlab
srun -n 1 -c 4 matlab-default -nosplash -nodesktop -r parallel_timing_batch

Submit this job. It will take many minutes to finish. Do you get
expected speed-up?

In timing.out, you should see something like

ans =

 Pool with properties:

 Connected: true
 NumWorkers: 4
 Cluster: local
 AttachedFiles: {}
 IdleTimeout: 30 minutes (30 minutes remaining)
 SpmdEnabled: true

serial time: 7.635188; result: 1000000000
parallel time: 5.901599; result: 1000000000
parallel time: 3.516169; result: 1000000000
Parallel pool using the 'local' profile is shutting down.

Explain why the second parfor is faster then the first parfor

Tips: Using batch job for this kind of small computation is
definitely an overkill, as queuing and initializing would take much
longer than actual compuation. You will probably use the interactive
mode much more often in this class.

Bonus task: make your terminal prettier

Open ~/.bash_profile (for example vim ~/.bash_profile), add the
following lines

For Mac

export CLICOLOR=1
export LSCOLORS=ExFxBxDxCxegedabagacad

For Linux (Odyssey)

alias ls="ls --color=auto"

Type source ~/.bash_profile or relaunch the terminal. Notice any
difference?

Session 1: MATLAB Functions and Scripts

Date: 09/11/2017, Monday

In [1]:

format compact

MATLAB’s function control can be somewhat confusing… Let me try to
explain it.

3 ways to execute MATLAB codes

You can run MATLAB codes in these ways:

	Executing codes directly in the interactive console

	Put codes in a script (an m-file), and execute the script in the
console

	Put codes in a function (also an m-file), and execute the
function in the console

Executing codes directly

You know how to run the codes in the interactive console:

In [2]:

a=1;
b=2;
2*a+5*b

ans =
 12

To avoid re-typing the formula 2*a+5*b over and over again, you can
create an inline function in the interative environment.

In [3]:

f = @(a,b) 2*a+5*b

f =
 function_handle with value:
 @(a,b)2*a+5*b

In [4]:

f(1,2)
f(2,3)

ans =
 12
ans =
 19

Writing a script

A script simply allows you to execute many lines of codes at once. It is
not a function. There’s no input and output variables.

To open a new script, type “edit” in the console or click on the “New”
Button.

In [5]:

edit

Save the following code into a file with the suffix “.m”

In [6]:

%%file my_script.m
a=1;
b=2;
2*a+5*b

Created file '/Users/zhuangjw/Research/Computing/personal_web/AM111/docs/my_script.m'.

Execute the script by typing its file name in the console. Make sure
your working directory is the same as the script’s directory.

In [7]:

my_script

ans =
 12

You can definitely change parameters a, b in your script and re-run
the script over and over again. However, to have a better control on
input arguments, you need to write a function, a not script.

Writing a function

A function is also a file with the suffix “.m”, same as a script. But it
contains the function head which defines input and output
parameters. The function name has to be the same as the file name.

In [8]:

%%file my_func.m
function s=my_func(a,b)
 s = 2*a+5*b;
end

Created file '/Users/zhuangjw/Research/Computing/personal_web/AM111/docs/my_func.m'.

Now you can provide input arguments to your function.

In [9]:

my_func(1,2)

ans =
 12

Multi-level functions

An m-file can contain multiple functions. But only the first one can be
accessed from the outside. Others are only for internal use.

In [10]:

%%file mul_by_4.m

function z=mul_by_4(x)
 y = mul_by_2(x);
 z = mul_by_2(y);
end

function y=mul_by_2(x)
 y = 2*x;
end

Created file '/Users/zhuangjw/Research/Computing/personal_web/AM111/docs/mul_by_4.m'.

You can call mul_by_4(), but cannot call mul_by_2().

In [11]:

mul_by_4(2)

ans =
 8

In [12]:

mul_by_2(2)

Error using eval
Undefined function 'mul_by_2' for input arguments of type 'double'.

Note: Since R2016b, you can also add functions in
scripts [https://www.mathworks.com/help/matlab/matlab_prog/local-functions-in-scripts.html].
However, you had better avoid this usage for backward capability.
Otherwise, people using an older version of MATLAB will have trouble
running your code. Always create a separate file for your function.

Session 2: Speed-up your code by vectorization

Date: 09/18/2017, Monday

This session is mostly about reviewing Lecture 4 and 5. This page just
introduces an additional trick to make your code faster and cleaner.

For loops

You already know how to create a Mandelbrot set by writting tons of
“for” loops. If not, see Lecture 5’s note.

In [1]:

%%file mande_by_loops.m
function Z_final = mande_by_loops(C, T)

 [nx,ny] = size(C);
 Z_final = zeros(nx,ny); % to hold last value of z, at all possible points.

 for ix = 1:nx
 for iy = 1:ny

 % get the value of c at current point.
 % note that MATLAB is case-sensitive
 c = C(ix,iy);
 z = 0; % initial value, doesn't matter too much
 for t=2:T
 z = z^2+c;
 end
 Z_final(ix,iy) = z; % save the last value of z

 end
 end

end

Created file '/Users/zhuangjw/Research/Computing/personal_web/AM111/docs/mande_by_loops.m'.

Vectorization

The above function has 3 “for” loops, but 2 of them are not necessary,
because you can operate on the entire array.

In [2]:

%%file mande_by_vec.m
function Z = mande_by_vec(C, T)
 % vectorized over C and Z

 [nx,ny] = size(C);
 Z = zeros(nx,ny);
 for t=2:T
 Z = Z.^2+C;
 end

end

Created file '/Users/zhuangjw/Research/Computing/personal_web/AM111/docs/mande_by_vec.m'.

Performance comparision

Compared to the for-loop version, this vectorized version is much
shorter, and 20x faster!

In [3]:

% initialization
nx = 1000;
xm = 1.75;
x = linspace(-xm, xm, nx);
y = linspace(-xm, xm, nx);
[Cr, Ci] = meshgrid(x,y);
C = Cr + i*Ci;

T = 50;

% use loops
tic
Z_loop = mande_by_loops(C,T);
toc

% use vectorization
tic
Z_vec = mande_by_vec(C,T);
toc

% check if results are equal
isequal(Z_vec,Z_loop)

% plot two results
subplot(211);pcolor(abs(Z_loop));
shading flat;colormap jet; colorbar;caxis([0,2]);

subplot(212);pcolor(abs(Z_vec));
shading flat;colormap jet; colorbar;caxis([0,2]);

Elapsed time is 4.883975 seconds.
Elapsed time is 0.255324 seconds.

ans =

 logical

 1

[image: _images/session2_vectorization_8_1.png]

MATLAB’s loop is notoriously slow because it keeps checking the variable
types at every iteration. A rule of thumb is shorter code is often
faster, in terms of achieving the same functionality. (Only for
high-level languages like MATLAB and Python. Loop is fast in low-level
languages.)

Session 3: LU Factorization & Markov Process

Date: 09/25/2017, Monday

In [1]:

format compact

Read Canvas - Files - lectures- linear_algebra.pdf first before
looking at this material.

LU=PA Factorization

Gaussian elimination consists of forward elimination and backward
substitution.

The backward substition part is easy – You already have an upper
diagnonal matrix \(U\), and just need to solve \(Ux=b\).

The forward elimination part is more interesting. By doing forward
elimination by hand, you transformed the original matrix \(A\) to an
upper diagnonal matrix \(U\). In fact, during this forward
elimination process, you not only produced matrix \(U\), but also
constructed two other matrices \(L\) and \(P\) (even if you
didn’t even notice it!). They satisfy

\[LU=PA\]

	L is a lower triangular matrix L with all diagonal elements being
1. It contains all the multipliers used during the forward
elimination.

	\(P\) is a permutation matrix containing only 0 and 1. It
accounts for all row-swapings during the forward elimination.

Row operation as matrix multiplication

Basic idea

To understand how \(LU=PA\) works, you should always keep in mind
that

row operation = left multiply

Or more verbosely

A row operation on matrix A = left-multiply a matrix L to A (i.e. calculate LA)

This is a crucial concept in linear algebra.

Let’s see an example:

In [2]:

A = [10 -7 0; -3 2 6 ;5 -1 5]

A =
 10 -7 0
 -3 2 6
 5 -1 5

Perform the first step of gaussian elimination, i.e. add 0.3*row1 to
row2.

In [3]:

A1 = A; % make a copy
A1(2,:) = A(2,:)+0.3*A(1,:)

A1 =
 10.0000 -7.0000 0
 0 -0.1000 6.0000
 5.0000 -1.0000 5.0000

There’s another way to perform the above row-operation: left-multiply A
by an elementary matrix.

In [4]:

L1 = [1,0,0; 0.3,1,0; 0,0,1] % make our elementary matrix

L1 =
 1.0000 0 0
 0.3000 1.0000 0
 0 0 1.0000

In [5]:

L1*A

ans =
 10.0000 -7.0000 0
 0 -0.1000 6.0000
 5.0000 -1.0000 5.0000

L1*A gives the same result as the previous row-operation!

Let’s repeat this idea again:

row operation = left multiply

Find elementary matrix

How to find out the matrix L1? Just perform the row-operation to an
identity matrix

In [6]:

L1 = eye(3); % 3x3 identity matrix
L1(2,:) = L1(2,:)+0.3*L1(1,:) % the row-operation you want to "encode" into this matrix

L1 =
 1.0000 0 0
 0.3000 1.0000 0
 0 0 1.0000

Then you can perform L1*A to apply this row-operation on any matrix A.

Same for the permutation operation, as it is also an elementary row
operation.

In [7]:

Ap = A; % make a copy
% swap raw 1 and 2
Ap(2,:) = A(1,:);
Ap(1,:) = A(2,:);
Ap

Ap =
 -3 2 6
 10 -7 0
 5 -1 5

You can “encode” this row-swapping operation into an elementary
permutation matrix.

In [8]:

I = eye(3); % 3x3 identity matrix
P1 = I;

% swap raw 1 and 2
P1(2,:) = I(1,:);
P1(1,:) = I(2,:);
P1

P1 =
 0 1 0
 1 0 0
 0 0 1

Multiplying A by P1 is equivalent to permuting A directly:

In [9]:

P1*A % same as Ap

ans =
 -3 2 6
 10 -7 0
 5 -1 5

Get L during forward elimination

For simplicity, assume you don’t need permutation steps. Then you just
transform an arbrary 3x3 matrix A (non-singular, of course) to an
upper-diagnoal matrix U by 3 row operations. Such operations are
equivalent to multiplying A by 3 matrices \(L_1,L_2,L_3\)

\[A \rightarrow L_1 A \rightarrow L_2 L_1 A \rightarrow L_3 L_2 L_1 A = U\]

We can rewrite it as

\[A = (L_3 L_2 L_1)^{-1}U\]

Or

\[A = LU , \ \ L= (L_3 L_2 L_1)^{-1}\]

It is easy to get \(L\) as long as you know \(L_1,L_2,L_3\) from
the operations you’ve performed.

In [10]:

A % show A's value again

A =
 10 -7 0
 -3 2 6
 5 -1 5

In [11]:

L1 = [1,0,0; 0.3,1,0; 0,0,1] % repeat L1 again

L1 =
 1.0000 0 0
 0.3000 1.0000 0
 0 0 1.0000

In [12]:

L1*A % row operation by left-multiply

ans =
 10.0000 -7.0000 0
 0 -0.1000 6.0000
 5.0000 -1.0000 5.0000

In [13]:

L2 = [1,0,0; 0,1,0; -0.5,0,1] % build the next elimination step

L2 =
 1.0000 0 0
 0 1.0000 0
 -0.5000 0 1.0000

In [14]:

L2*L1*A % apply the next elimination step

ans =
 10.0000 -7.0000 0
 0 -0.1000 6.0000
 0 2.5000 5.0000

In [15]:

L3 = [1,0,0; 0,1,0; 0,25,1] % build the last elimination step

L3 =
 1 0 0
 0 1 0
 0 25 1

In [16]:

U = L3*L2*L1*A % apply the last elimination step

U =
 10.0000 -7.0000 0
 0 -0.1000 6.0000
 0 0 155.0000

Now you’ve transformed \(A\) to an upper-diagonal matrix \(U\).
And you also have \(L\):

In [16]:

L = inv(L3*L2*L1)

L =
 1.0000 0 0
 -0.3000 1.0000 0
 0.5000 -25.0000 1.0000

Or

In [17]:

L = inv(L1)*inv(L2)*inv(L3)

L =
 1.0000 0 0
 -0.3000 1.0000 0
 0.5000 -25.0000 1.0000

Calculating \(L\) is just putting the coefficients in
\(L_1,L_2,L_3\) together and negating them (except diagonal
elements).

Why? Again, because

row operation = left multiply

Here we are just encoding multiple row operations
\(L_1^{-1},L_2^{-1},L_3^{-1}\) into a single matrix \(L\). You
get this matrix by applying all those operations to an identity matrix.

You can think of \(L_1^{-1}\) as “a row operation that cancels the
effect of \(L_1\)“:

In [18]:

inv(L1)

ans =
 1.0000 0 0
 -0.3000 1.0000 0
 0 0 1.0000

Last, let’s verify \(A=LU\)

In [19]:

L*U

ans =
 10.0000 -7.0000 0
 -3.0000 2.0000 6.0000
 5.0000 -1.0000 5.0000

We can say that \(L\) represents all forward elimination steps
(assume no permutaion). By knowing \(L\), you can easily get
\(U\) by \(U=L^{-1}A\)

Get P during forward elimination

Say you have a permutation step P somewhere, for example

\[L_3 P L_2 L_1 A = U\]

It can be shown that \(P\) can be “pushed rightward”

\[L_3 L_2 L_1 (PA) = U\]

(The proof is too technical. See P159 of Trefethen L N, Bau III D.
Numerical linear algebra[M]. Siam, 1997 if you are interested).

Thus

\[LU=PA\]

Markov process

There are two towns, both have 100 people (so 200 in total). Everyday,
50% of people in town 1 will move to town 2, while 30% of people in town
2 will move to town 1. Eventually, how many people will each town have?

The initial condition is

\[\begin{split}\begin{bmatrix}
 x_1 \\
 x_2
\end{bmatrix}
=
\begin{bmatrix}
 100 \\
 100
\end{bmatrix}\end{split}\]

Each day

\[\begin{split}\begin{bmatrix}
 x_1 \\
 x_2
\end{bmatrix}
\rightarrow
\begin{bmatrix}
 x_1 - 0.5x_1 + 0.3x_2 \\
 x_2 + 0.5x_1 - 0.3x_2
\end{bmatrix}
=
\begin{bmatrix}
 0.5x_1 + 0.3x_2 \\
 0.5x_1 + 0.7x_2
\end{bmatrix}
=
\begin{bmatrix}
 0.5 & 0.3 \\
 0.5 & 0.7
\end{bmatrix}
\begin{bmatrix}
 x_1 \\
 x_2
\end{bmatrix}\end{split}\]

This is a Markov process. We can get its Markov matrix (or
transition matrix)

\[\begin{split}A = \begin{bmatrix}
 0.5 & 0.3 \\
 0.5 & 0.7
\end{bmatrix}\end{split}\]

Each column of A has a sum of 1 because it means probability.

In [20]:

x = [100; 100] % initial condition
A = [0.5 0.3;0.5 0.7] % Markov matrix

x =
 100
 100
A =
 0.5000 0.3000
 0.5000 0.7000

At the second day, the number of people will be:

In [21]:

A*x

ans =
 80
 120

Town2 gets more people. This is expected because town1->town2 has a
higher probability than town2->town1.

How about after 10 days?

In [22]:

x10 = A^10*x

x10 =
 75.0000
 125.0000

11 days?

In [23]:

x11 = A*x10

x11 =
 75.0000
 125.0000

There’s no difference between day 10 and day 11, which means the
population reaches equilibrium. This is called the power method for
finding the state vector for this transition matrix.

This power method is intuitive but not very efficient. For a fancier
method for Pset3, see Canvas - Files - scripts_and_code - lin_algebra
- pagerank_demo_template.m.

Session 4: Linux Command Line

Date: 10/02/2017, Monday

This week we are going to use Harvard’s Odyssey
supercomputer [https://www.rc.fas.harvard.edu/odyssey/]. It is a
Linux system, just like most remote servers. Before playing with Odyssey
I strongly recommend you to get familiar with Linux basics.

Why command line, not graphical interface?

	Command line is more like programming so it allows you to do much
more, such as renaming 1000 files.

	When controlling a remote server, the internet bandwidth is typically
not enough for showing the graphical user interface. But with command
line you only need to transfer texts, not images.

Linux commmand line is an absolutely essential skill for any
programmers (much more important than MATLAB 🙂), so learn it!

Trying Linux command on your Laptop

On Mac

Mac has a built-in app called Terminial. You can find it by searching
for “Terminial” in Spotlight Search (command+space, or
control+space for older OS). Mac command line is almost the same as
Linux command line, so you can practice Linux commands on Mac without
having to connect to Odyssey. This default terminal is already pretty
good for beginners. If you want more advanced terminals, try
iTerm2 [https://www.iterm2.com].

For connecting to remote servers, simply execute
ssh username@ip_address in the terminal.

On Windows

Window’s own command line is very different from Linux’s. On Windows
10, you can follow this official
tutorial [https://msdn.microsoft.com/commandline/wsl/about] to
install the Linux subsystem, so you can play with Linux on your laptop.
If you are using an older windows system, you can try some online Linux
“playground” like
https://www.tutorialspoint.com/unix_terminal_online.php.

For connecting to remote servers, you can use the old
putty [http://www.putty.org] or try more advanced ones like
MobaXterm [https://mobaxterm.mobatek.net].

Linux Command Basics

There are a bunch of Linux tutorials online. I particularly like this
one [https://ryanstutorials.net/linuxtutorial/]. You should at least
read Chapter 1 - Chapter 5.

Text Editors

By default, there are 3 text editors available: vim, emacs and
nano. Just pick up one of them. I personally use vim but it has the
steepest learning curve. There are many discussions on which one to
choose (for example, this
article [https://medium.com/linode-cube/emacs-nano-or-vim-choose-your-terminal-based-text-editor-wisely-8f3826c92a68]).

Session 5: MATLAB backslash & some pitfalls

Date: 10/16/2017, Monday

In [1]:

format compact

Different behaviors of backslash

You’ve already used the backslash \ a lot to solve linear systems.
But if you look at MATLAB backslash
documentation [https://www.mathworks.com/help/matlab/ref/mldivide.html]
you will find it can do much more than solving linear systems. This
powerful feature can sometimes be very confusing if you are not careful.

Standard linear system

First see a standard problem: a 4x4, full rank square matrix \(A\)
and a 4-element column vector \(b\). We want to solve

\[Ax = b\]

In [2]:

b = rand(4,1)

b =
 0.8147
 0.9058
 0.1270
 0.9134

In [3]:

A = rand(4,4)

A =
 0.6324 0.9575 0.9572 0.4218
 0.0975 0.9649 0.4854 0.9157
 0.2785 0.1576 0.8003 0.7922
 0.5469 0.9706 0.1419 0.9595

Well, not big deal…

In [4]:

x = A\b

x =
 -0.0486
 0.9204
 -0.0630
 0.0579

We can verify the result:

In [5]:

A*x - b % almost zero

ans =
 1.0e-15 *
 0
 0
 -0.0555
 -0.1110

Incorrect shape

You should already notice that \(b\) must be a column vector.

In [6]:

x = A\b' % row vector doesn't work

Error using \
Matrix dimensions must agree.

Also, \(A\) and \(b\) must have the same number of rows, because
\(A\) and \(b\) come from the following linear system with
\(n\) rows (equations) and \(m\) columns (variables):

\[\begin{split}\left\{
\begin{array}{}
a_{11}x_1 + a_{12}x_2 + ... + a_{1m}x_m = b_1 \\
a_{21}x_1 + a_{22}x_2 + ... + a_{1m}x_m = b_2 \\
... \\
a_{n1}x_1 + a_{n2}x_2 + ... + a_{1m}x_m = b_n \\
\end{array}
\right.\end{split}\]

In [7]:

A = rand(3,4) % A has 3 rows but b has 4 rows

A =
 0.6557 0.9340 0.7431 0.1712
 0.0357 0.6787 0.3922 0.7060
 0.8491 0.7577 0.6555 0.0318

In [8]:

A\b % doesn't work

Error using \
Matrix dimensions must agree.

Looks like \(A\) has to be a square matrix, but see below…

Over-detemined linear system

In fact, A doesn’t have to be a square matrix, just like a linear system
doesn’t need to have the same number of rows (equations) and columns
(variables).

Here we create an over-determined system

\[\begin{split}\left\{
\begin{array}{}
a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1 \\
a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2 \\
a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3 \\
a_{41}x_1 + a_{42}x_2 + a_{43}x_3 = b_4
\end{array}
\right.\end{split}\]

An over-determined system means A is tall and narrow (more
rows than columns)

In [9]:

A = rand(4,3) % more equations (rows) than variables (columns)

A =
 0.2769 0.6948 0.4387
 0.0462 0.3171 0.3816
 0.0971 0.9502 0.7655
 0.8235 0.0344 0.7952

In [10]:

x = A\b % backslash works

x =
 0.9798
 0.2901
 0.2142

MATLAB does return a set of \((x_1,x_2,x_3)\). But you know this
can’t be the solution because you can’t fulfill 4 equations by just 3
degrees of freedom.

In [11]:

A*x - b % not zero, so x is not a solution

ans =
 -0.2479
 -0.6868
 0.4078
 0.0738

So what’s x? It is actually a least-square fit, same as the result
from the normal equation

\[A^TAx=A^Tb\]

In [12]:

(A'*A)\(A'*b) % solve normal equation

ans =
 0.9798
 0.2901
 0.2142

In MATLAB, simply using A\b is actually more accurate than
(A'*A)\(A'*b) for solving least squares, especially for large
matrices. That’s because the condition number of \(A^TA\) could be
very large.

In [13]:

cond(A)
cond(A'*A)

ans =
 8.7242
ans =
 76.1114

We find \(cond(A^TA) = cond(A)^2\). It is not quite large in this
tiny case but could explode for large matrices

So how to avoid the normal equation?

Recall that, for a standard, full rank system \(Ax=b\), the code
A\b doesn’t compute \(A^{-1}b\) at all, because \(A^{-1}\)
is often ill-conditioned. It uses LU
factorization [https://en.wikipedia.org/wiki/LU_decomposition] which
is better-conditioned.

Similarly, for an over-determined \(Ax=b\), the code A\b doesn’t
compute \(A^TA\) at all. It uses QR
factorization [https://en.wikipedia.org/wiki/QR_decomposition] or
similar techniques to make the problem better-conditioned.

Under-determined linear system

Now let’s look at an under-determined system

\[\begin{split}\left\{
\begin{array}{}
a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + a_{14}x_4 + a_{15}x_5 = b_1 \\
a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + a_{24}x_4 + a_{25}x_5 = b_2 \\
a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + a_{34}x_4 + a_{35}x_5 = b_3 \\
a_{41}x_1 + a_{42}x_2 + a_{43}x_3 + a_{44}x_4 + a_{45}x_5 = b_4
\end{array}
\right.\end{split}\]

An under-determined system means A is short and wide (more
columns than rows)

In [14]:

A = rand(4,5) % less equations (rows) than variables (columns)

A =
 0.1869 0.7094 0.6551 0.9597 0.7513
 0.4898 0.7547 0.1626 0.3404 0.2551
 0.4456 0.2760 0.1190 0.5853 0.5060
 0.6463 0.6797 0.4984 0.2238 0.6991

In [15]:

x = A\b % backslash still works

x =
 -0.1886
 1.4263
 0.2995
 -0.3730
 0

We can see x is the solution to \(Ax=b\):

In [16]:

A*x - b % almost zero

ans =
 1.0e-15 *
 0.4441
 0.3331
 0.0278
 0.1110

However, we know that an under-determined system has infinite number of
solutions. But MATLAB just returns one value. What’s special about this
value?

It turns out that the x we get here has the smallest norm
\(||x||_2\) among all possible solutions.

In [17]:

norm(x) % smaller than any other possible solutions

ans =
 1.5162

Another multiple-behavior example

Because the backslash operator \ has different behaviors under
different circumstances, you have to be very careful. Sometimes your
matrix shape might be wrong, but MATLAB will still return a result. But
in that case you might be solving a least square problem instead of a
full-rank linear system!

MATLAB has quite a lot of multi-behavior (“poly-algorithm”) functions.
Another example is the built-in
lu() [https://www.mathworks.com/help/matlab/ref/lu.html] function
for LU factorization.

In [18]:

A = rand(4,4) % to be LU-factorized

A =
 0.8909 0.1493 0.8143 0.1966
 0.9593 0.2575 0.2435 0.2511
 0.5472 0.8407 0.9293 0.6160
 0.1386 0.2543 0.3500 0.4733

Just calling lu() with no return, you get a single matrix with
\(L\) and \(U\) stacked together.

In [19]:

lu(A)

ans =
 0.9593 0.2575 0.2435 0.2511
 0.5704 0.6938 0.7903 0.4728
 0.9287 -0.1295 0.6905 0.0246
 0.1445 0.3129 0.0978 0.2867

Using [L,U] to hold the return, you get two separate matrices.
Notice that L is not a strict lower-triangular matrix, because it
also incorporates the pivoting matrix \(P\)

In [20]:

[L,U] = lu(A)

L =
 0.9287 -0.1295 1.0000 0
 1.0000 0 0 0
 0.5704 1.0000 0 0
 0.1445 0.3129 0.0978 1.0000
U =
 0.9593 0.2575 0.2435 0.2511
 0 0.6938 0.7903 0.4728
 0 0 0.6905 0.0246
 0 0 0 0.2867

Using [L,U,P] to hold the return, you get all three matrices. Now
L is strictly lower-triangular.

In [21]:

[L,U,P] = lu(A)

L =
 1.0000 0 0 0
 0.5704 1.0000 0 0
 0.9287 -0.1295 1.0000 0
 0.1445 0.3129 0.0978 1.0000
U =
 0.9593 0.2575 0.2435 0.2511
 0 0.6938 0.7903 0.4728
 0 0 0.6905 0.0246
 0 0 0 0.2867
P =
 0 1 0 0
 0 0 1 0
 1 0 0 0
 0 0 0 1

You can ignore the returning P by ~, but keep in mind that the
returning L is different from that in cell [20], although the code
looks very similar.

In [22]:

[L,U,~] = lu(A)

L =
 1.0000 0 0 0
 0.5704 1.0000 0 0
 0.9287 -0.1295 1.0000 0
 0.1445 0.3129 0.0978 1.0000
U =
 0.9593 0.2575 0.2435 0.2511
 0 0.6938 0.7903 0.4728
 0 0 0.6905 0.0246
 0 0 0 0.2867

Session 6: Three ways of differentiation

Date: 10/23/2017, Monday

In [1]:

format compact

There are 3 major ways to compute the derivative \(f'(x)\)

	Symbolic differentiation

	Numerical differentiation

	Automatic differentiation

You are already familiar with the first two. The last one is not
required by this class, but it is just too good to miss. It is the
core of modern deep learning engines like Google’s
TensorFlow [https://www.tensorflow.org], which is used for training
AlphaGo
Zero [https://www.nature.com/nature/journal/v550/n7676/full/nature24270.html].
Here we only give a very basic introduction. Enthusiasts can read
Baydin A G, Pearlmutter B A, Radul A A, et al. Automatic
differentiation in machine learning: a survey

Let’s compare the pros and cons of each method.

Symbolic differentiation

MATLAB toolbox

MATLAB provides symbolic tool
box [https://www.mathworks.com/products/symbolic.html] for symbolic
differentiation. It can assist your mathetical analysis and can be used
to verify the numerical differentiation results.

In [2]:

syms x

Consider this function

\[f(x) = \frac{1-e^{-x}}{1+e^{-x}}\]

In [3]:

f0 = (1-exp(-x))/(1+exp(-x))

f0 =
-(exp(-x) - 1)/(exp(-x) + 1)

The first-order derivative is

In [4]:

f1 = diff(f0,x)

f1 =
exp(-x)/(exp(-x) + 1) - (exp(-x)*(exp(-x) - 1))/(exp(-x) + 1)^2

We can keep calculating higher-order derivatives

In [5]:

f2 = diff(f1,x)

f2 =
(2*exp(-2*x))/(exp(-x) + 1)^2 - exp(-x)/(exp(-x) + 1) + (exp(-x)*(exp(-x) - 1))/(exp(-x) + 1)^2 - (2*exp(-2*x)*(exp(-x) - 1))/(exp(-x) + 1)^3

In [6]:

f3 = diff(f2,x)

f3 =
exp(-x)/(exp(-x) + 1) - (6*exp(-2*x))/(exp(-x) + 1)^2 + (6*exp(-3*x))/(exp(-x) + 1)^3 - (exp(-x)*(exp(-x) - 1))/(exp(-x) + 1)^2 + (6*exp(-2*x)*(exp(-x) - 1))/(exp(-x) + 1)^3 - (6*exp(-3*x)*(exp(-x) - 1))/(exp(-x) + 1)^4

In [7]:

f4 = diff(f3,x)

f4 =
(14*exp(-2*x))/(exp(-x) + 1)^2 - exp(-x)/(exp(-x) + 1) - (36*exp(-3*x))/(exp(-x) + 1)^3 + (24*exp(-4*x))/(exp(-x) + 1)^4 + (exp(-x)*(exp(-x) - 1))/(exp(-x) + 1)^2 - (14*exp(-2*x)*(exp(-x) - 1))/(exp(-x) + 1)^3 + (36*exp(-3*x)*(exp(-x) - 1))/(exp(-x) + 1)^4 - (24*exp(-4*x)*(exp(-x) - 1))/(exp(-x) + 1)^5

In [8]:

f5 = diff(f4,x)

f5 =
exp(-x)/(exp(-x) + 1) - (30*exp(-2*x))/(exp(-x) + 1)^2 + (150*exp(-3*x))/(exp(-x) + 1)^3 - (240*exp(-4*x))/(exp(-x) + 1)^4 + (120*exp(-5*x))/(exp(-x) + 1)^5 - (exp(-x)*(exp(-x) - 1))/(exp(-x) + 1)^2 + (30*exp(-2*x)*(exp(-x) - 1))/(exp(-x) + 1)^3 - (150*exp(-3*x)*(exp(-x) - 1))/(exp(-x) + 1)^4 + (240*exp(-4*x)*(exp(-x) - 1))/(exp(-x) + 1)^5 - (120*exp(-5*x)*(exp(-x) - 1))/(exp(-x) + 1)^6

We see the expression becomes more and more complicated for higher-order
derivatives, even though the original \(f(x)\) is fairly simple.

You can imagine that symbolic diff can be quite inefficient for
complicated functions and higher-order derivatives.

Convert symbol to function

We can convert MATLAB symbols to
functions [https://www.mathworks.com/help/symbolic/matlabfunction.html],
and use them to compute numerical values.

In [9]:

f0_func = matlabFunction(f0)

f0_func =
 function_handle with value:
 @(x)-(exp(-x)-1.0)./(exp(-x)+1.0)

f0 is converted to a normal MATLAB function. It is different from
just copying the symbolic expression to MATLAB codes, as it is
vectorized over input x (notice the ./).

Same for f0’s derivatives:

In [10]:

f1_func = matlabFunction(f1);
f2_func = matlabFunction(f2);
f3_func = matlabFunction(f3);
f4_func = matlabFunction(f4);
f5_func = matlabFunction(f5);

Let’s plot all the derivatives.

In [11]:

xx = linspace(-3,3,40); % for plot

In [12]:

%plot -s 400,300
hold on
plot(xx,f0_func(xx))
plot(xx,f1_func(xx))
plot(xx,f2_func(xx))
plot(xx,f3_func(xx))
plot(xx,f4_func(xx))
plot(xx,f5_func(xx))
legend('f0','f1','f2','f3','f4','f5','Location','SouthEast')

[image: _images/session6_differentiation_24_0.png]

Numerical differentiation

Is it possible to use the numerical differentiation we learned in class
to approximate the 5-th order derivative? Let’s try.

In [13]:

y0 = f0_func(xx); % get numerical data

In [14]:

dx = xx(2)-xx(1) % get step size

dx =
 0.1538

We use the center difference, which is much more accurate than
forward or backward difference.

\[f'(x) \approx \frac{f(x+h)-f(x-h)}{2h}\]

For simplicity, we just throw away the end points x(1) and
x(end). So the resulted gradient array y1 is shorter than y0
by 2 elements. You can also use forward or backward diff to approximate
the derivates at the end points. But here we only focus on internal
points.

In [15]:

y1 = (y0(3:end) - y0(1:end-2)) / (2*dx);
length(y1)

ans =
 38

The numerical diff highly agrees with the symbolic one!

In [16]:

%plot -s 400,200
hold on
plot(xx,f1_func(xx))
plot(xx(2:end-1),y1,'k.')
legend('analytical','numerical','Location','Best')

[image: _images/session6_differentiation_33_0.png]

Then we go to 2-nd order:

In [17]:

y2 = (y1(3:end) - y1(1:end-2)) / (2*dx);
length(y2)

ans =
 36

In [18]:

%plot -s 400,200
hold on
plot(xx,f2_func(xx))
plot(xx(3:end-2),y2,'.k')

[image: _images/session6_differentiation_36_0.png]

Also doing well. 3-rd order?

In [19]:

y3 = (y2(3:end) - y2(1:end-2)) / (2*dx);
length(y3)

ans =
 34

In [20]:

%plot -s 400,200
hold on
plot(xx,f3_func(xx))
plot(xx(4:end-3),y3,'.k')

[image: _images/session6_differentiation_39_0.png]

Looks like center diff is doing a really good job.

4-th order?

In [21]:

y4 = (y3(3:end) - y3(1:end-2)) / (2*dx);
length(y4)

ans =
 32

In [22]:

%plot -s 400,200
hold on
plot(xx,f4_func(xx))
plot(xx(5:end-4),y4,'.k')

[image: _images/session6_differentiation_42_0.png]

Some points start to deviate, but not too much.

5-th order?

In [23]:

y5 = (y4(3:end) - y4(1:end-2)) / (2*dx);
length(y5)

ans =
 30

In [24]:

%plot -s 400,200
hold on
plot(xx,f5_func(xx))
plot(xx(6:end-5),y5,'.k')

[image: _images/session6_differentiation_45_0.png]

Now we get some noticeable error! The relative error at the peak is
~10%.

In [25]:

format long
max(y5) % numerical
max(f5_func(xx)) % analytical

ans =
 0.455250196326829
ans =
 0.493735580546680

Even though the center diff is doing a really good job for low-order
derivatives, the error accumulates as the order gets higher. The
situation will be even worse for forward or backward diff. Also, the
\(f(x)\) we choose here is pretty smooth. For a steep \(f(x)\),
numerical differentiation tends to perform badly.

You might want to use symbolic differentiation instead, but it could be
very slow for complicated functions. Is there a better method?

Automatic differentiation

Theoretical explanation

Automatic
differentiation [https://en.wikipedia.org/wiki/Automatic_differentiation]
(“autodiff” for short) kind of gets the best of both worlds.

	It is not numerical differentiation. Autodiff has no truncation
error. The result is as accurate as symbolic method.

	It is not symbolic differentiation. Autodiff doens’t compute the
complicated symbolic/analytical expression, so it is much faster than
the symbolic way.

How can this magic happen? The easiest explanation is using dual
numbers [https://en.wikipedia.org/wiki/Automatic_differentiation#Automatic_differentiation_using_dual_numbers].

Consider \(f(x) = x^2\). Instead of using a real number like 1.0 or
1.5 as the function input, we use a dual number

\[x+\epsilon\]

where \(x\) is still a normal number but \(\epsilon\) is a
special number with property

\[\epsilon^2 = 0\]

It is analogous to the imaginary unit \(i\). You can add or multiply
\(i\) as usual, but whenever you encounter \(i^2\), replace it
by -1. Similarly, you can add or multiply \(\epsilon\) as usual, but
when ever you encounter \(\epsilon^2\), replace it by 0.

\[f(x+\epsilon) = x^2 + 2x\epsilon +\epsilon^2 = x^2 + 2x\epsilon\]

The coefficient of \(\epsilon\) is?

\(2x\) !! which is just \(f'(x)\)

We didn’t perform any “differentiating” at all. Just by carrying an
additional “number” \(\epsilon\) through a function, we got the
derivative of that function as well.

Let’s see another example \(f(x) = x^3\)

\[(x+\epsilon)^3 = x^3 + 3x^2\epsilon +3x\epsilon^2 + \epsilon^3= x^3 + 3x^2\epsilon\]

The coeffcient is \(3x^2\), which is just the derivative of
\(x^3\).

If the function is not a polynomial? Say \(f(x) = e^x\)

\[e^{x+\epsilon} = e^{x}e^{\epsilon} =
e^{x}(1+\epsilon+\frac{1}{2}\epsilon^2 + ...) = e^{x}(1+\epsilon)\]

The coeffcient of \(\epsilon\) is \(e^x\), which is the
derivative of \(e^x\). (If you wonder how can a computer know the
Taylor expansion of \(e^{\epsilon}\), think about how can a computer
calculate \(e^x\))

Code example

MATLAB doesn’t have a good autodiff tool, so we use a Python package
autograd [https://github.com/HIPS/autograd] developed by Harvard
Intelligent Probabilistic Systems Group.

You don’t need to try this package right now (since this is not a
Python class), but just keep in mind that if you need a fast and
accurate way to compute derivative, there are such tools exist.

Don’t worry if you don’t know Python. We will explain as it goes.

In [1]:

%matplotlib inline
import matplotlib.pyplot as plt # contains all plotting functions
import autograd.numpy as np # contains all basic numerical functions
from autograd import grad # autodiff tool

We still differentiate \(f(x) = \frac{1-e^{-x}}{1+e^{-x}}\) as in
the MATLAB section.

In [2]:

Define a Python function
Python has no "end" statement
It uses code indentation to determine the end of each block
def f0(x):
 y = np.exp(-x)
 return (1.0 - y) / (1.0 + y)

In [3]:

grad(f0) returns the gradient of f0
f1 is not a symbolic expression!
It is just a normal numerical function,
but it returns the exact gradient thanks to the autodiff magic
f1 = grad(f0)
f2 = grad(f1)
f3 = grad(f2)
f4 = grad(f3)
f5 = grad(f4)

In [4]:

xx = np.linspace(-3, 3, 40) # for plot

In [5]:

plot all derivatives
as in cell[12] of the MATLAB section
plt.plot(xx, f0(xx), label='f0')
plt.plot(xx, f1(xx), label='f1')
plt.plot(xx, f2(xx), label='f2')
plt.plot(xx, f3(xx), label='f3')
plt.plot(xx, f4(xx), label='f4')
plt.plot(xx, f5(xx), label='f5')
plt.legend();

[image: _images/session6_differentiation_61_0.png]

The peak of the 5-th order derivative is the same as the result given by
MATLAB symbolic tool box. There’s no truncation error here.

In [6]:

f5(xx).max() # the result is exact.

Out[6]:

0.49373558054667849

While being able to give the exact result, autodiff is much faster than
the symbolic way!

Another code example: differentiating custom programs

Another advantage of autodiff is that it can differentiate arbitrary
programs, not just mathematical expressions. Many complicated
functions cannot be expressed by a combination of basic functions (e.g.
the Bessel function in HW5), and in this case symbolic diff will have
trouble.

However, the theory of autodiff is simply “carrying an additional number
through your program”, so as long as you can code the program, you
can differentiate it. The dual number will just go through all while
and if statements as usual.

Let’s make a weird funcition.

In [7]:

def custom_func(x):
 assert x > 0 # raise an error for negative x

 y = 0 # initial value

 # Again, Python has no "end" statement
 # It uses code indentation to determine the end of this while block
 while y+x < 10:
 y += x

 return y

This function initializes y as 0 and keeps accumulating the
input x to y, until y reaches 10. In other words

	y is a multiple of x, i.e. y=N*x.

	y is smaller than but very close to 10

For \(x=1\), \(f(x)=9x=9\), because \(10x\) will exceed 10.

In [8]:

custom_func(1.0)

Out[8]:

9.0

For \(x=1.2\), \(f(x)=8x=9.6\), because \(9x=10.8\) will
exceed 10.

In [9]:

custom_func(1.2)

Out[9]:

9.6

We can still take derivative of this weird function.

In [10]:

custom_grad = grad(custom_func) # autodiff magic

For \(x=1\), \(f(x)=9x\), so \(f'(x)=9\)

In [11]:

print(custom_grad(1.0))

9.0

For \(x=1.2\), \(f(x)=8x\), so \(f'(x)=8\)

In [12]:

print(custom_grad(1.2))

8.0

Symbolic diff will have a big trouble with this kind of function.

So why use numerical differentiation?

If autodiff is so powerful, why do we need other methods? Well, you need
symbolic diff for pure mathematical analysis. But how about numerical
diff?

Well, the major application of numerical diff (forward difference, etc.)
is not getting the derivative of a known function \(f(x)\). It is
for solving differential equations

\[f'(x) = \Phi(f,x)\]

In this case, \(f(x)\) is not known (your goal is to find it), so
symbol diff or autodiff can’t help you. Numerical diff gives you a way
to solve this ODE

\[\frac{f(x+h) - f(x)}{h} \approx f'(x) = \Phi(f,x)\]

Session 7: Error convergence of numerical methods

Date: 10/30/2017, Monday

In [1]:

format compact

Error convergence of general numerical methods

Many numerical methods has a “step size” or “interval size” \(h\),
no mattter numerical differentiation, numerical intergration or ODE
solving. We denote \(f(h)\) as the numerical approximation to the
exact answer \(f_{true}\). Note that \(f\) can be a derivate, an
integral or an ODE solution.

In general, the numerical error gets smaller when \(h\) is reduced.
We say a method has \(O(h^k)\) convergence if

\[f(h) - f_{true} = C \cdot h^k + C_1 \cdot h^{k+1} + ...\]

As \(h \rightarrow 0\), we will have
\(f(h) \rightarrow f_{true}\). Higher-order methods (i.e. larger
\(k\)) leads to faster convergence.

Error convergence of numerical differentiation

Consider \(f(x) = e^x\), we use finite difference to approximate
\(g(x)=f'(x)=e^x\). We only consider \(x=1\) here.

In [2]:

f = @(x) exp(x); % the function we want to differentiate

In [3]:

x0 = 1; % only consider this point
g_true = exp(x0) % analytical solution

g_true =
 2.7183

We try both forward and center schemes, with different step sizes
\(h\).

In [4]:

h_list = 0.01:0.01:0.1; % test different step size h
n = length(h_list);
g_forward = zeros(1,n); % to hold forward difference results
g_center = zeros(1,n); % to hold center difference results

for i = 1:n % loop over different step sizes
 h = h_list(i); % get step size

 % forward difference
 g_forward(i) = (f(x0+h) - f(x0))/h;

 % center difference
 g_center(i) = (f(x0+h) - f(x0-h))/(2*h);
end

The first element in g_forward is quite accurate, but the error
grows as the step size \(h\) gets larger.

In [5]:

g_forward

g_forward =
 Columns 1 through 7
 2.7319 2.7456 2.7595 2.7734 2.7874 2.8015 2.8157
 Columns 8 through 10
 2.8300 2.8444 2.8588

Center difference scheme is much more accurate.

In [6]:

g_center

g_center =
 Columns 1 through 7
 2.7183 2.7185 2.7187 2.7190 2.7194 2.7199 2.7205
 Columns 8 through 10
 2.7212 2.7220 2.7228

Compute the absolute error of each scheme

In [7]:

error_forward = abs(g_forward - g_true)
error_center = abs(g_center - g_true)

error_forward =
 Columns 1 through 7
 0.0136 0.0274 0.0412 0.0551 0.0691 0.0832 0.0974
 Columns 8 through 10
 0.1117 0.1261 0.1406
error_center =
 Columns 1 through 7
 0.0000 0.0002 0.0004 0.0007 0.0011 0.0016 0.0022
 Columns 8 through 10
 0.0029 0.0037 0.0045

Make a \(h \leftrightarrow error\) plot.

In [8]:

%plot -s 600,200
subplot(121); plot(h_list, error_forward,'-o')
title('forward');xlabel('h');ylabel('error')
subplot(122); plot(h_list, error_center,'-o')
title('center');xlabel('h');ylabel('error')

[image: _images/session7_convergence_17_0.png]

	Forward scheme gives a straight line because it is a first-order
method and \(error(h) \approx C \cdot h\)

	Center scheme gives a parabola because it is a second-order method
and \(error(h) \approx C \cdot h^2\)

Diagnosing the order of convergence

But by only looking at the \(error(h)\) plot, how can you know the
curve is a parabola? Can’t it be a cubic \(C \cdot h^3\)?

Recall that in HW4 you were fitting a function \(R = bW^a\). To
figure out the coefficients \(a\) and \(b\), you need to take
the log. The same thing here.

If \(error = C \cdot h^k\), then

\[\log(error) = \log C + k \log h\]

The slope of the \(log(error) \leftrightarrow log(h)\) plot is
\(k\), i.e. the order of the numerical method.

In [9]:

%plot -s 600,200
subplot(121); loglog(h_list, error_forward,'-o')
title('forward');xlabel('log(h)');ylabel('log(error)')
subplot(122); loglog(h_list, error_center,'-o')
title('center');xlabel('log(h)');ylabel('log(error)')

[image: _images/session7_convergence_21_0.png]

To figure out the slope we can do linear regression. You can solve a
least square problem as in HW4&5, but here we use a shortcut as
described in this
example [https://www.mathworks.com/help/matlab/data_analysis/linear-regression.html#bswj6xx].
polyfit(x, y, 1) returns the slope and intercept.

In [10]:

polyfit(log(h_list), log(error_forward), 1)

ans =
 1.0132 0.3662

In [11]:

polyfit(log(h_list), log(error_center), 1)

ans =
 2.0002 -0.7909

The slopes are 1 and 2, respectively. So we’ve verified that
forward-diff is 1st-order accurate while center-diff is 2nd-order
accurate.

If the analytical solution is not known, you can use the most accurate
solution (with the smallest h) as the true solution to figure out the
slope. If your numerical scheme is converging to the true solution,
then the estimate of order will still be OK. The risk is your numerical
scheme might be converging to a wrong solution, and in this case it
makes no sense to talk about error convergence.

\(h\) needs to be small

\(error(h) \approx C \cdot h^k\) only holds for small \(h\).
When \(h\) is sufficiently small, we say that it is in the
asymptotic
regime [https://en.wikipedia.org/wiki/Asymptotic_analysis]. All the
error analysis only holds in the asymptotic regime, and makes little
sense when \(h\) is very large.

Let’s make the step size 100 times larger and see what happens.

In [12]:

h_list = 1:1:10; % h is 100x larger than before

% -- the codes below are exactly the same as before --

n = length(h_list);
g_forward = zeros(1,n); % to hold forward difference results
g_center = zeros(1,n); % to hold center difference results

for i = 1:n % loop over different step sizes
 h = h_list(i); % get step size

 % forward difference
 g_forward(i) = (f(x0+h) - f(x0))/h;

 % center difference
 g_center(i) = (f(x0+h) - f(x0-h))/(2*h);
end

error_forward = abs(g_forward - g_true);
error_center = abs(g_center - g_true);

In [13]:

%plot -s 600,200
subplot(121); loglog(h_list, error_forward,'-o')
title('forward');xlabel('log(h)');ylabel('log(error)')
subplot(122); loglog(h_list, error_center,'-o')
title('center');xlabel('log(h)');ylabel('log(error)')

[image: _images/session7_convergence_29_0.png]

Now the error is super large and the log-log plot is not a straight
line. So keep in mind that for most numerical schemes we always assume
small \(h\).

So how small is “small”? It depends on the scale of your problem and how
rapidly \(f(x)\) changes. If the problem is defined in
\(x \in [0,0.001]\), then \(h=0.001\) is not small at all!

Error convergence of numerical intergration

Now consider

\[I = \int_0^1 f(x)\]

We still use \(f(x) = e^x\) for convenience, as the integral of
\(e^x\) is still \(e^x\).

In [14]:

f = @(x) exp(x); % the function we want to integrate

In [15]:

I_true = exp(1)-exp(0)

I_true =
 1.7183

We use composite midpoint scheme to approximate \(I\). We test
different interval size \(h\). Note that we need to first define the
number of intervals \(m\), and then get the corresponding \(h\),
because \(m\) has to be an integer.

In [16]:

m_list = 10:10:100; % number of points
h_list = 1./m_list; % interval size

n = length(m_list);
I_list = zeros(1,n); % to hold intergration results

for i=1:n % loop over different interval sizes (or number of intevals)
 m = m_list(i);
 h = h_list(i);

 % get edge points
 x_edge = linspace(0, 1, m+1);

 % edge to middle
 x_mid = (x_edge(1:end-1) + x_edge(2:end))/2;

 % composite midpoint intergration scheme
 I_list(i) = h*sum(f(x_mid));
end

The result is quite accurate.

In [17]:

I_list

I_list =
 Columns 1 through 7
 1.7176 1.7181 1.7182 1.7182 1.7183 1.7183 1.7183
 Columns 8 through 10
 1.7183 1.7183 1.7183

The error is at the order of \(10^{-3}\).

In [18]:

error_I = abs(I_list-I_true)

error_I =
 1.0e-03 *
 Columns 1 through 7
 0.7157 0.1790 0.0795 0.0447 0.0286 0.0199 0.0146
 Columns 8 through 10
 0.0112 0.0088 0.0072

Again, a log-log plot will provide more insights about the order of
convergence.

In [19]:

%plot -s 600,200
subplot(121);plot(h_list, error_I, '-o')
title('error -- h');xlabel('h');ylabel('error')
subplot(122);loglog(h_list, error_I, '-o')
title('log(error) -- log(h)');xlabel('log(h)');ylabel('log(error)')

[image: _images/session7_convergence_42_0.png]

The slope is 2, so the method is second order accurate.

In [20]:

polyfit(log(h_list), log(error_I), 1)

ans =
 1.9999 -2.6372

We’ve just applied the same error analysis method on both
differentiation and integration. The same method also applies to ODE
solving.

Error convergence of ODE solving

Consider a simple ODE

\[\frac{dy(t)}{dt} = y(t),\ \ y(0)=1\]

The exact solution is \(y(t) = e^t\). We use the forward Euler
scheme to solve it.

\[\frac{y(t+h) - y(t)}{h} \approx y(t)\]

The iteration is given by

\[y(t+h) = y(t) + h \cdot y(t) = (1+h)y(t)\]

Let’s only consider \(t \in [0,1]\). More specifically, we’ll only
look at the final state \(y(1)\), so we don’t need to record every
step.

In [21]:

y1_true = exp(1) % true y(1)

y1_true =
 2.7183

Same as in the integration section, we need to first define the number
of total iterations \(m\), and then get the corresponding step size
\(h\). This ensures we will land exactly at \(t=1\), not its
neighbours.

In [22]:

y0 = 1; % initial condition

m_list = 10:10:100; % number of iterations to get to t=1
h_list = 1./m_list; % step size

n = length(m_list);
y1_list = zeros(1,n); % to hold the final point

for i=1:n % loop over different step sizes
 m = m_list(i); % get the number of iterations
 h = h_list(i); % get step size

 y1 = y0; % start with y(0)

 % Euler scheme begins here
 for t=1:m
 y1 = (1+h)*y1; % no need to record intermediate results here
 end

 y1_list(i) = y1; % only record the final point

end

As \(h\) shrinks, our simulated \(y(1)\) gets closer to the true
result.

In [23]:

y1_list

y1_list =
 Columns 1 through 7
 2.5937 2.6533 2.6743 2.6851 2.6916 2.6960 2.6991
 Columns 8 through 10
 2.7015 2.7033 2.7048

In [24]:

error_y1 = abs(y1_list-y1_true)

error_y1 =
 Columns 1 through 7
 0.1245 0.0650 0.0440 0.0332 0.0267 0.0223 0.0192
 Columns 8 through 10
 0.0168 0.0149 0.0135

\(error \leftrightarrow h\) plot is a straight line, so we know the
method is fist order accurate. The log-log plot is not quite necessary
here.

In [25]:

%plot -s 600,200
subplot(121);plot(h_list, error_y1, '-o')
title('error -- h');xlabel('h');ylabel('error')
subplot(122);loglog(h_list, error_y1, '-o')
title('log(error) -- log(h)');xlabel('log(h)');ylabel('log(error)')

[image: _images/session7_convergence_56_0.png]

Of course we can still calculate the slope of the log-log plot, to
double check the forward Euler scheme is a first-order method.

In [26]:

polyfit(log(h_list), log(error_y1), 1)

ans =
 0.9687 0.1613

The take-away is, you can think about the order of a method in a more
general sense. We’ve covered numerical differentiation, intergration and
ODE here, and similar analysis also applies to root-finding, PDE,
optimization, etc…

Session 8: ODE stability; stiff system

Date: 11/06/2017, Monday

In [1]:

format compact

ODE Stability

Problem statement

Consider a simple ODE

\[\frac{dy}{dt} = -a y, \ \ y(0)=y_0\]

where \(a\) is a positive real number.

It can be solved analytically:

\[y(t) = y_0e^{-at}\]

So the analytical solution decays exponentially. A numerical solution is
allowed to have some error, but it should also be decaying. If the
solution is instead growing, we say it is unstable.

Explicit scheme

Forward Eulerian scheme for this problem is

\[\frac{y_{k+1} - y_k}{h} = -ay_k\]

The iteration is given by

\[y_{k+1}= (1-ha)y_k\]

The solution at the k-th time step can be written out explicitly

\[y_k= (1-ha)^ky_0\]

We all know that when \(h\) gets smaller the numerical solution will
converge to the true result. But here we are interested in relatively
large \(h\), i.e. we wonder what’s the largest possible
\(h\) we can use while still getting an OK result.

Here are the solutions with different \(h\).

In [2]:

%plot -s 400,300

% set parameters, can use different value
a = 1;
y0 = 1;
tspan = 10;

% build function
f_true = @(t) y0*exp(-a*t); % true answer
f_forward = @(k,h) (1-h*a).^k * y0; % forward Euler solution

% plot true result
t_ar = linspace(0, tspan); % for plotting
y_true = f_true(t_ar);
plot(t_ar, y_true)
hold on

% plot Forward Euler solution
for h=[2.5, 1.5, 0.5] % try different step size
 kmax = round(tspan/h);
 k_ar = 0:kmax;
 t_ar = k_ar*h;

 % we are not doing Forward Euler iteration here
 % since the expression is known, we can directly
 % get the entire time series
 y_forward = f_forward(k_ar, h);

 plot(t_ar, y_forward, '-o')
end

% tweak details
ylim([-1,1]);
xlabel('t');ylabel('y');
legend('true solution', 'h=2.5', 'h=1.5', 'h=0.5' , 'Location', 'Best')

[image: _images/session8_stabiilty_9_0.png]

There all 3 typical regimes, determined by the magnitude of
\([1-ha]\) inside the expression \(y_k= (1-ha)^ky_0\).

	Small \(h\): \(0 \le [1-ha] < 1\)

In this case, \((1-ha)^k\) will decay with \(k\) and always be
positve.

We can solve for the range of \(h\):

\[h \le 1/a\]

This corresponds to h=0.5 in the above figure.

	Medium \(h\): \(-1 \le [1-ha] < 0\)

In this case, the absolute value of \((1-ha)^k\) will decay with
\(k\), but it oscillates between negative and postive. This is not
desirable, but not that bad, as our solution doesn’t blow up.

We can solve for the range of \(h\):

\[1/a < h \le 2/a\]

This corresponds to h=1.5 in the above figure.

	Large \(h\): \([1-ha] < -1\)

In this case, the absolute value of \((1-ha)^k\) will increase
with \(k\). That’s the worst case because the true solution will be
decaying, but our numerical solution insteads gives exponential
growth. Here our numerical scheme is totally wrong, not just
inaccurate.

We can solve for the range of \(h\):

\[h > 2/a\]

This corresponds to h=2.5 in the above figure.

The take-away is, to obtain a stable solution, the time step size
\(h\) needs to be small enough. The time step requirement depends
on \(a\), i.e. how fast the system is changing. If \(a\)
is large, i.e. the system is changing rapidly, then \(h\) has to be
small enough (\(h<1/a\) or \(h<2/a\), depends on what your want)
to capture this fast change.

Implicit scheme

But sometimes we really want to use a large step size. For example, we
might only care about the steady state where \(t\) is very large, so
we would like to quickly jump to the steady state with very few number
of iterations. Implicit method allows us to use a large time step while
still keep the solution stable.

Backward Eulerian scheme for this problem is

\[\frac{y_{k+1} - y_k}{h} = -ay_{k+1}\]

In general, the right hand-side would be some function
\(f(y_{k+1})\), and we need to solve a nonlinear equation to obtain
\(y_{k+1}\). This is why this method is called implicit. But in
this problem here we happen to have a linear function, so we can still
write out the iteration explicitly.

\[y_{k+1}= \frac{y_k}{1+ha}\]

The solution at the k-th time step can be written as

\[y_k= \frac{y_0}{(1+ha)^k}\]

Here are the solutions with different \(h\).

In [3]:

%plot -s 400,300

% set parameters, can use different value
a = 1;
y0 = 1;
tspan = 10;

% build function
f_true = @(t) y0*exp(-a*t); % true answer
f_backward = @(k,h) (1+h*a).^(-k) * y0; % backward Euler solution

% plot true result
t_ar = linspace(0, tspan); % for plotting
y_true = f_true(t_ar);
plot(t_ar, y_true)
hold on

% plot Forward Euler solution
for h=[2.5, 1.5, 0.5] % try different step size
 kmax = round(tspan/h);
 k_ar = 0:kmax;
 t_ar = k_ar*h;

 % we are not doing Forward Euler iteration here
 % since the expression is known, we can directly
 % get the entire time series
 y_backward = f_backward(k_ar, h);

 plot(t_ar, y_backward, '-o')
end

% tweak details
ylim([-0.2,1]);
xlabel('t');ylabel('y');
legend('true solution', 'h=2.5', 'h=1.5', 'h=0.5' , 'Location', 'Best')

[image: _images/session8_stabiilty_15_0.png]

Since \(\frac{1}{1+ha}\) is always smaller than 1 for any positive
\(h\) and postive \(a\), \(y_k= \frac{y_k}{(1+ha)^k}\) will
always decay. So we don’t have the instability problem as in the
explicit method. A large \(h\) simply gives inaccurate results,
but not terribly wrong results.

According to no free lunch
theorm [https://en.wikipedia.org/wiki/No_free_lunch_theorem],
implicit methods must have some additional costs (half joking. that’s
another theorm). The cost for an implicit method is solving a nonlinear
system. In general we will have \(f(y, t)\) on the right-hand side
of the ODE, not simply \(-ay\).

General form

Using \(-ay\) on the right-hand side allows a simple analysis, but
the idea of ODE stability/instability applies to general ODEs. For
example considering a system like

\begin{align}
\frac{dy}{dt} &= -f(t) y
\end{align}
You can use the typical magnitude of \(f(t)\) as the “\(a\)” in
the previous analysis.

Even for

\begin{align}
\frac{dy}{dt} &= -f(t) y^2
\end{align}
You can consider the typical magnitude of \(yf(t)\)

Stiff system

Consider an ODE system

\begin{align}
\frac{dy_1}{dt} &= -a_1y_1 \\
\frac{dy_2}{dt} &= -a_2y_2
\end{align}
Using an explicit method, the time step requirement for the first
equation is \(h<1/a_1\), while the requirement for the second one is
\(h<1/a_2\). If \(a_1 >> a_2\), we have to use a quite small
\(h\) to accomodate the first requirement, but that’s an overkill
for the second equation. You will be using too many unnecessary time
steps to solve \(y_2\)

We can define the stiff ratio \(r=\frac{a_1}{a_2}\). A system is
very stiff if \(r\) is very large. With explicit methods you often
need an unnecessarily large amount of time steps to ensure stability.
Implicit methods are particularly useful for a stiff system because it
has no instability problem.

You might want to solve two equations separately so we can use a larger
time step for the second equation to save computing power. But it’s not
that easy because in real examples the two equations are often
intertwined:

\begin{align}
\frac{dy_1}{dt} &= -a_1y_1 -a_3y_2 \\
\frac{dy_2}{dt} &= -a_2y_2 -a_4y_1
\end{align}

Session 9: Partial differential equation

Date: 11/13/2017, Monday

In [1]:

format compact

I assume you’ve learnt very little about PDEs in basic math class, so I
would first talk about PDEs from a programmer’s perpesctive and come to
the math when necessary.

PDE from a programmer’s view: You already know that ODE is the
evolution of a single value. From the current alue \(y_t\) you can
solve for the next value \(y_{t+1}\). PDE is the evolution of an
array. From the current array \((x_1,x_2,...,x_m)_t\) you can solve
for the array at the next time step \((x_1,x_2,...,x_m)_{t+1}\).
Typically, the array represents some physical field in the space, like
1D temperature distribution.

Naive advection “solver”

Consider a spatial domain \(x \in [0,1]\). We discretize it by 11
points including the boundary.

In [2]:

x = linspace(0,1,11)
nx = length(x)

x =
 Columns 1 through 7
 0 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000
 Columns 8 through 11
 0.7000 0.8000 0.9000 1.0000
nx =
 11

The initial physical field (e.g. the concentration of some chemicals) is
5.0 for \(x \in [0.2,0.3]\) and zero elsewhere. Let’s create the
initial condition array.

In [3]:

u0 = zeros(1,nx); % zero by default
u0(3:4) = 5.0; % non-zero between 0.2~0.3

In [4]:

%plot -s 400,200
plot(x, u0, '-o')
ylim([0,6]);

[image: _images/session9_PDE_8_0.png]

Say the chemical is blew by the wind towards the right. At the next time
step the field is shifted rightward by 1 grid point.

To represent the solution at the next time step, we could create a new
array u_next and set u_next(4:5) = 5.0, based on our knowledge
that u0(3:4) = 5.0. However, we want to write code that works for
any initiatial condition, so the code would look like:

In [5]:

% initialization
u = u0;
u_next = zeros(1,nx); % initialize to 0

% shift rightward
u_next(2:end) = u(1:end-1);

% just plotting
hold on
plot(x, u, '-o')
plot(x, u_next, '-o')
ylim([0,6]);
legend('initial condition', 'advected')

[image: _images/session9_PDE_10_0.png]

Space-time diagram

We can keep shifting the field and record the solution at 5 time steps.

In [6]:

u = u0; % reset solution
u_next = zeros(1,nx); % reset solution
u_ts = zeros(5,nx); % to record the entire time series

u_ts(1,:) = u; % record initial condition

for t=2:5
 u_next(2:end) = u(1:end-1); % shift rightward
 u = u_next; % swap arrays for the next iteration
 u_ts(t,:) = u; % record current step
end

% just plotting
hold on
for t=1:5
 plot(x, u_ts(t, :), '-o')
end
ylim([0,6]);
legend('t=0', 't=1', 't=2', 't=3', 't=4')

[image: _images/session9_PDE_13_0.png]

The plot looks quite convoluted with multiple time steps… A better way
to visualize it is to plot the time series in a 2D x-t plain.

In [7]:

contourf(x,0:4,u_ts)
colorbar()
xlabel('x');ylabel('time')
title("space-time diagram")

[image: _images/session9_PDE_15_0.png]

Here we can clearly see the “chemical field” is moving rightward through
time.

Advection equation

We call this rightward shift an advection process. Just like the
diffusion process introduced in the class, advection happens
everywhere in the physical world. In general, the physical field won’t
be shifted by exact one grid point. Instead, we can have arbitrary wind
speed, changing with space and time. To represent this general advection
process, we can write a partial differential equation:

Advection equation with initial condition \(u_0(x)\)

\[\frac{\partial u}{\partial t}+c\frac{\partial u}{\partial x} = 0, \ \ u(x,0) = u_0(x)\]

This means a phyical field \(u(x,t)\) is advected by wind speed
\(c\). In general, the wind speed \(c(x,t)\) can change with
space and time. But if \(c\) is a constant, then the analytical
solution is

\[u(x,t) = u_0(x-ct)\]

You can verify this solution by bringing it back to the PDE.

We ask, “what’s the chemical concentration at a spatial point
\(x=x_j\), when \(t=t_n\)“? According to the solution, the
answer is, “it is the same as the concentration at
\(x=x_j-ct_n\) when \(t=0\)“. This is physically intuitive. The
chemical originally at \(x=x_j-ct_n\) was traveling rightward at
speed \(c\), so after time period \(t_n\) it would reach
\(x=x_j\). Thus in order to find the concentration at \(x=x_j\)
right now, what we can do is going backward in time to find where does
the current chemical come from.

This solution-finding process means going downward&leftward along the
contour line in space-time diagram shown before.

Numerical approximation to advection equation

In practice, \(c\) is often not a constant, so we can’t easily find
an anlytical solution and must rely on numerical methods.

Use first-order finite difference approximation for both
\(\frac{\partial u}{\partial t}\) and
\(\frac{\partial u}{\partial x}\):

\[\frac{u_j^{n+1}-u_j^n}{\Delta t} + c\frac{u_j^{n}-u_{j-1}^n}{\Delta x} = 0\]

Let \(\alpha=\frac{c \Delta t}{\Delta x}\), the iteration can be
written as

\begin{align}
u_j^{n+1} &= u_j^n - \alpha(u_j^{n}-u_{j-1}^n) \\
&= (1-\alpha)u_j^n + \alpha u_{j-1}^n
\end{align}
Note that, to approximate \(\frac{\partial u}{\partial x}\), we use
\(\frac{u_j-u_{j-1}}{\Delta x}\) instead of
\(\frac{u_{j+1}-u_{j}}{\Delta x}\). There’s an important physical
reason for that. Here we assume \(c\) is positive (rightward wind),
so the chemical should come from the leftside (\(u_{j-1}\)), not the
rightside (\(u_{j+1}\)).

Finally, notice that when \(\alpha=1\) we effectively get the
previous naive “shifting” scheme.

One step integration

We set \(c=0.1\) and \(\Delta t=0.5\), so after one time step
the chemical would be advected by half grid point (recall that our grid
interval is 0.1).

Coding up the scheme is straightforward. The major difference from ODE
solving is your are updating an array, not a single scalar.

In [8]:

% set parameters
c = 0.1; % wind velocity
dx = x(2)-x(1)
dt = 0.5;
alpha = c*dt/dx

% initialization
u = u0;
u_next = zeros(1,nx);

% one-step PDE integration
for j=2:nx
 u_next(j) = (1-alpha)*u(j) + alpha*u(j-1);
 % think about what to do for j=1?
 % we will talk about boundaries later
end

% plotting
hold on
plot(x, u, '-o')
plot(x, u_next, '-o')
ylim([0,6]);
legend('t=0', 't=0.5')

dx =
 0.1000
alpha =
 0.5000

[image: _images/session9_PDE_24_1.png]

Multiple steps

To integrate for multiple steps, we just add another loop for time.

In [9]:

% re-initialize
u = u0;
u_next = zeros(1,nx);

% PDE integration for 2 time steps
for t = 1:2 % loop for time
 for j=2:nx % loop for space
 u_next(j) = (1-alpha)*u(j) + alpha*u(j-1);
 end
 u = u_next;
end

% plotting
hold on
plot(x, u0, '-o')
plot(x, u, '-o')
ylim([0,6]);
legend('t=0', 't=1')

[image: _images/session9_PDE_27_0.png]

We got a pretty huge error here. After \(t=0.5 \times 2=1\), the
solution should just be shifted by one grid point, like in the previous
naive PDE “solver”. Here the center of the chemical field seems alright
(changed from 0.25 to 0.35), but the chemical gets diffused pretty
badly. That’s due to the numerical error of the first-order scheme.

Does decreasing time step size help?

In ODE solving, we can always reduce time step size to improve accuracy.
Does the same trick help here?

In [10]:

c = 0.1;
dx = x(2)-x(1);
dt = 0.1; % use a much smaller time step
nt = round(1/dt) % calculate the number of time steps needed
alpha = c*dt/dx

% === exactly the same as before ===
u = u0;
u_next = zeros(1,nx);

for t = 1:nt
 for j=2:nx
 u_next(j) = (1-alpha)*u(j) + alpha*u(j-1);
 end
 u = u_next;
end

hold on
plot(x, u0, '-o')
plot(x, u, '-o')
ylim([0,6]);
legend('t=0', 't=1')

nt =
 10
alpha =
 0.1000

[image: _images/session9_PDE_31_1.png]

Oops, there is no improvement.

That’s because we have both time discretization error
\(O(\Delta t)\) spatial discretization error \(O(\Delta x)\)
in PDE solving. The total error for our scheme is
\(O(\Delta t)+O(\Delta x)\). Simply decreasing the time step size is
not enough. To improve accuracy you also need to increase the number of
spatial grid points (nx).

Another way to improve accuracy is to use high-order scheme. But
designing high-order advection scheme is quite challenging. You can find
tons of papers by searching something like “high-order advection
scheme”.

Boundary condition

So far we’ve ignored the boundary condition. Because the field is
shifting rightward, the leftmost grid point is able to receive
information from the “outside”. Think about a pipe where new chemicals
keep coming in from the left.

Our previous specification of the advection equation is not complete.
The complete version is:

Advection equation with initial condition \(u_0(x)\) and left
boundary condition \(u_{left}(t)\)

\[\begin{split}\frac{\partial u}{\partial t}+c\frac{\partial u}{\partial x} = 0 \\
u(x,0) = u_0(x) \\
u(0,t) = u_{left}(t)\end{split}\]

Here we assume \(u_{left}(t)=5\). In the code, you just need to add
one line.

In [11]:

c = 0.1;
dx = x(2)-x(1);
dt = 0.1;
nt = round(1/dt);
alpha = c*dt/dx;

u = u0;
u_next = zeros(1,nx);

for t = 1:nt

 u_next(1) = 5.0; % the only change!!
 for j=2:nx
 u_next(j) = (1-alpha)*u(j) + alpha*u(j-1);
 end
 u = u_next;
end

hold on
plot(x, u0, '-o')
plot(x, u, '-o')
ylim([0,6]);
legend('t=0', 't=1')

[image: _images/session9_PDE_35_0.png]

We can now see new chemicals are “injected” from the left side.

Stability

Numerical experiment

PDE solvers also have stability requirements, just like ODE solvers. The
general idea is the time step needs to be small enough, compared to
the spatial step. This holds for advection, diffusion, wave and
various forms of PDEs, although the exact formula for time step
requirement can be different depending on the problem.

Here we use a much larger time step to see what happens.

In [12]:

c = 0.1;
dx = x(2)-x(1);
dt = 2; % a much larger time step
alpha = c*dt/dx

u = u0;
u_next = zeros(1,nx);

for t = 1:10
 for j=2:nx
 u_next(j) = (1-alpha)*u(j) + alpha*u(j-1);
 end
 u = u_next;

 if t == 1 % record the first time step
 u1 = u;
 end
end

hold on
plot(x, u0, '-o')
plot(x, u1, '-o')
plot(x, u, '--')
ylim([-40,40]);
legend('initial', 't=2', 't=20')

alpha =
 2

[image: _images/session9_PDE_40_1.png]

The simulation blows very quickly.

Intuitive explanation

In the previous experiment we have \(\alpha=2\), so one of the
coeffcients in the formula becomes negative:

\[u_j^{n+1} = (1-\alpha)u_j^n + \alpha u_{j-1}^n = (-1)\times u_j^n + 2\times u_{j-1}^n\]

Negative coefficients are meaningless here, because a grid point
\(x_j\) shouldn’t get “negative contribution” from a nearby grid
point \(x_{j-1}\). It makes no sense to advect “negative
density” or “negative concentration”.

To keep both coefficients (\(\alpha\) and \(1-\alpha\)) postive,
we require \(0 \le \alpha \le 1\). Recall
\(\alpha = \frac{c \Delta t}{\Delta x}\), so we essentially require
the time step to be small.

This is just an intuitive explanation. To rigorously derive the
stability requirement, you would need some heavy math as shown below.

Stability analysis (theoretical)

The time step requirement can be derived by von Neumann Stability
Analysis [https://en.wikipedia.org/wiki/Von_Neumann_stability_analysis]
(also see PDE_solving.pdf on canvas).

The idea is we want to know how does the magnitude of \(u_j^{n}\)
change with time, under the iteration (first-order advection scheme for
example):

\[u_j^{n+1} = (1-\alpha)u_j^n + \alpha u_{j-1}^n\]

It is troublesome to track the entire array
\([u_1^{n},u_2^{n},...,u_m^{n}]\). Instead we want a single value to
represent the magnitude of the array. The general idea is to perform
Fourier expansion [http://mathworld.wolfram.com/FourierSeries.html]
on the spatial field \(u(x)\). From Fourier analysis we know any 1D
field can viewed as the sum of waves of different wavelength:

\[u(x) = \sum_{k=-\infty}^{\infty} T_k e^{ikx}\]

Thus we can track how a single component, \(T_k e^{ikx}\), evolves
with time. We omit the subscript \(k\) and add the time index
\(n\), so the component at the n-th time step can be written as
\(T(n) e^{ikx}\). The iteration for this component is

\[T(n+1)e^{ikx} = (1-\alpha)T(n) e^{ikx} + \alpha T(n) e^{ik(x-\Delta x)}\]

Divide both sides by \(e^{ikx}\)

\[T(n+1) = (1-\alpha)T(n) + \alpha T(n) e^{-ik\Delta x}\]

\[\frac{T(n+1)}{T(n)} = 1-\alpha + \alpha e^{-ik\Delta x}\]

Define amplification factor \(A=\frac{T(n+1)}{T(n)}\). We want
\(|A| \le 1\) so the solution won’t blow up, just like what we did
in the ODE stability analysis.

We thus require

\[|1-\alpha + \alpha e^{-ik\Delta x}| \le 1\]

So we’ve transformed the requirement on an array to the requirement on a
scalar.

We want this inequality to be true for any \(k\). It will finally
lead to a requirement for \(\alpha\), which is the same as the
previous intuitive analysis that \(0 \le \alpha \le 1\). Fully
working this out needs some math, see this
post [https://showmethemath.wordpress.com/2013/07/07/stability-of-upwind-scheme-with-forward-euler-time-integration/]
for example.

High-order PDE

The wave equation is a typical 2nd-order PDE

\[\frac{\partial^2 u}{\partial t^2} - c^2\frac{\partial^2 u}{\partial x^2} = 0\]

Compared to the advection equation, the major differences are

	The wave can go both rightward and leftward, at speed \(c\) or
\(-c\).

	It needs both left and right boundary condition. Periodic boundary
conditions are often used.

	It needs both 0th-order and 1st-order initial conditions, i.e.
\(u(x,t)|_{t=0}\) and
\(\frac{\partial u}{\partial t} |_{t=0}\). Otherwise you can’t
start your intergration, because a 2nd-order time derivative means
\(u^{n+1}\) would rely on both \(u^{n}\) and \(u^{n-1}\).
0th-order initial condition only gives you one time step, but you
need two time steps to get started.

Session 10: Fast Fourier Transform

Date: 11/27/2017, Monday

In [1]:

format compact

Generate input signal

Fourier transform is widely used in signal processing. Let’s looks at
the simplest cosine signal first.

Define

\[y_1(t) = 0.3 + 0.7\cos(2\pi f_1t)\]

It has a magnitude of 0.7, with a constant bias term 0.3. We choose the
frequency \(f_1=0.5\).

In [2]:

t = -5:0.1:4.9; % time axis
N = length(t) % size of the signal

f1 = 0.5; % signal frequency
y1 = 0.3 + 0.7*cos(2*pi*f1*t); % the signal

N =
 100

In [3]:

%plot -s 800,200
hold on
plot(t, y1)
plot(t, 0.3*ones(N,1), '--k')
title('simple signal')
xlabel('t [s]')
legend('signal', 'mean')

[image: _images/session10_FFT_5_0.png]

Perform Fourier transform on the signal

You can hand code the Fourier
matrix [https://en.wikipedia.org/wiki/DFT_matrix] as in the class,
but here we use the built-in function for convenience.

In [4]:

F1 = fft(y1);
length(F1) % same as the length of the signal

ans =
 100

There are two different conventions for the normalization factor in the
Fourier matrix. One is having the normalization factor
\(\frac{1}{\sqrt{N}}\) in the both the Fourier matrix \(A\) and
the inverse transform matrix \(B\)

\[\begin{split}A = \frac{1}{\sqrt{N}} \begin{bmatrix}
1&1&1&\cdots &1 \\
1&\omega&\omega^2&\cdots&\omega^{N-1} \\
1&\omega^2&\omega^4&\cdots&\omega^{2(N-1)}\\
\vdots&\vdots&\vdots&\ddots&\vdots\\
1&\omega^{N-1}&\omega^{2(N-1)}&\cdots&\omega^{(N-1)(N-1)}\\
\end{bmatrix}\end{split}\]

\[\begin{split}B = \frac{1}{\sqrt{N}} \begin{bmatrix}
1&1&1&\cdots &1 \\
1&\omega^{-1}&\omega^{-2}&\cdots&\omega^{-(N-1)} \\
1&\omega^{-2}&\omega^{-4}&\cdots&\omega^{-2(N-1)}\\
\vdots&\vdots&\vdots&\ddots&\vdots\\
1&\omega^{-(N-1)}&\omega^{-2(N-1)}&\cdots&\omega^{-(N-1)(N-1)}\\
\end{bmatrix}\end{split}\]

MATLAB uses a different
convention [https://www.mathworks.com/help/matlab/ref/fft.html#buuutyt-6]
that

\[\begin{split}A = \begin{bmatrix}
1&1&1&\cdots &1 \\
1&\omega&\omega^2&\cdots&\omega^{N-1} \\
1&\omega^2&\omega^4&\cdots&\omega^{2(N-1)}\\
\vdots&\vdots&\vdots&\ddots&\vdots\\
1&\omega^{N-1}&\omega^{2(N-1)}&\cdots&\omega^{(N-1)(N-1)}\\
\end{bmatrix}\end{split}\]

\[\begin{split}B = \frac{1}{N} \begin{bmatrix}
1&1&1&\cdots &1 \\
1&\omega^{-1}&\omega^{-2}&\cdots&\omega^{-(N-1)} \\
1&\omega^{-2}&\omega^{-4}&\cdots&\omega^{-2(N-1)}\\
\vdots&\vdots&\vdots&\ddots&\vdots\\
1&\omega^{-(N-1)}&\omega^{-2(N-1)}&\cdots&\omega^{-(N-1)(N-1)}\\
\end{bmatrix}\end{split}\]

The difference doesn’t matter too much as long as you use one of them
consistently. In both cases there is

\begin{align}
F &= AY \text{ (Discrete Fourier transfrom)} \\
Y &= BF \text{ (Inverse transfrom)}
\end{align}

Full spectrum

The spectrum F1 (the result of the Fourier transfrom) is typically
an array of complex numbers. To plot it we need to use absolute
magnitude.

In [5]:

%plot -s 800,200
plot(abs(F1),'- .')
title('unnormalized full spectrum')

[image: _images/session10_FFT_12_0.png]

The first term in F1 indicates the magnitude of the constant term
(zero frequency). Diving by N gives us the actual value.

In [6]:

F1(1)/N % equal to the constant bias term specified at the beginning

ans =
 0.3000

Besides the constant bias F1(1), there are two non-zero pointings in
F1, indicating the cosine signal itself. The magnitude 0.7 is evenly
distributed to two points.

In [7]:

F1(2+4)/N, F1(end-4)/N % adding up to 0.7

ans =
 -0.3500 - 0.0000i
ans =
 -0.3500 + 0.0000i

Plotting F1/N shows more clearly the magnitude of signals at
different frequencies:

In [8]:

%plot -s 800,200
plot(abs(F1)/N,'- .')
title('(normalized) full spectrum')
ylabel('signal amplitude')

[image: _images/session10_FFT_18_0.png]

Half-sided spectrum

From the matrix \(A\) it is easy to show that, the first element
F(1) in the resulting spectrum is always a real number indicating
the constant bias term, while the rest of the array F(2:end) is
symmetric, i.e. F(2) == F(end), F(3) == F(end-1). (F(2) is
actually the conjugate of F(end), but we only care about magnitude
here.)

Due to such symmetricity, we can simply plot half of the array (scaled
by 2) without loss of information.

In [9]:

M = N/2 % need to cast to integer if N is an odd number

M =
 50

In [10]:

%plot -s 800,200
plot(abs(F1(1:M+1))/N*2, '- .')
title('(normalized) half-sided spectrum')
ylabel('signal amplitude')

[image: _images/session10_FFT_22_0.png]

Understanding units!

The Discrete Fourier Transform, by defintion, is simply a matrix
multiplication which acts on pure numbers. But real physical signals
have units. You cannot just treat the resulting array F1 as some
unitless frequency. If the signal is a time series then you need to deal
with seconds and hertz; if it is a wave in the space then you need to
deal with the wave length in meters.

In order to understand the unit of the resulting spectrum F1, let’s
look at the original time series y1 first.

The “time step” of the signal is

In [11]:

dt = t(2)-t(1) % [s]

dt =
 0.1000

This is the finest temporal resolution the signal can have. It
corresponds the highest frequency:

In [12]:

f_max = 1/dt % [Hz]

f_max =
 10.0000

On the contrary, the longest time range (dt*N, the time span of the
entire signal) corresponds to the lowest frequency:

In [13]:

df = f_max/N % [Hz]

df =
 0.1000

With the lowest frequency df being the “step size” in the frequency
axis, the value of the frequency axis is simply the array [0, df, 2*df,
…]. Now we can use correct values and units for the x-axis of the
spectrum plot.

In [14]:

%plot -s 800,200
plot(df*(0:M), abs(F1(1:M+1))/N*2,'- .')
title('half-sided spectrum with correct unit of x-axis')
ylabel('signal amplitude')
xlabel('frequency [Hz]')

[image: _images/session10_FFT_32_0.png]

The peak is at 0.5 Hz, consistent with our original signal which has a
period of 2 s, since 0.5 Hz = 1/(2s). Thus our unit specification is
correct.

Deal with negative frequency

The right half of the spectrum array (F1(M+2:end), not plotted in
the above figure) corresponds to negative frequency [-M*df, …,
-2*df, -df]. Thus each element in the entire F1 array corresponds
to each element in the frequency array [0, df, 2*df, …, M*df,
-M*df, …, -2*df, -df].

You can perform fftshift on the resulting spectrum F1 to swap
its left and right parts, so it will align with the motonically
increasing axis [-M*df, …, -2*df, -df, 0, df, 2*df, …, M*df].
That feels more natural from a mathematical point of view.

In [15]:

F_shifted = fftshift(F1);
plot(abs(F_shifted),'- .')

[image: _images/session10_FFT_36_0.png]

Perform inverse transform

Performing inverse transform is simply ifft(F1). Recall that MATLAB
performs the \(\frac{1}{N}\) scaling during the inverse transform
step.

We use norm to check if ifft(F1) is close enough to y1.

In [16]:

norm(ifft(F1) - y1) % almost zero

ans =
 1.2269e-15

Mix two signals

Fourier transform and inverse transform are very useful in signal
filering. Let’s first add a high-frequency noise to our original signal.

In [17]:

f2 = 5; % higher frequency
y2 = 0.2*sin(f2*pi*t); % noise
y = y1 + y2; % add up original signal and noise

In [18]:

%plot -s 800,400
subplot(311);plot(t, y2, 'r');
ylim([-1,1]);title('noise')

subplot(312);plot(t, y1);
ylim([-0.6,1.2]);title('original signal')

subplot(313);plot(t, y, 'k');
ylim([-0.6,1.2]);title('signal + noise')

[image: _images/session10_FFT_43_0.png]

After the Fourier transform, we see two new peaks at a relatively higher
frequency.

In [19]:

F = fft(y);

In [20]:

%plot -s 800,200
plot(abs(F), '- .')
title('spectrum with high-frequency noise')

[image: _images/session10_FFT_46_0.png]

Again, the noise magnitude 0.2 is evenly distributed to positive and
negative frequencies. Here we got complex conjugates:

In [21]:

F(2+24)/N, F(end-24)/N % magnitude of noises

ans =
 -0.0000 + 0.1000i
ans =
 -0.0000 - 0.1000i

Filter out high-frequency noise

Let’s wipe out this annoying noise. It’s very difficult to do so in the
original signal, but very easy to do in the spectrum.

In [22]:

F_filtered = F; % make a copy
F_filtered(26) = 0; % remove the high-frequency noise
F_filtered(76) = 0; % same for negative frequency

In [23]:

plot(abs(F_filtered), '- .')
title('filtered spectrum')

[image: _images/session10_FFT_52_0.png]

Then we can transform the spectrum back to the signal.

In [24]:

y_filtered = ifft(F_filtered);

If the filtering is done symmetrically (i.e. do the same thing for
positive and negative frequencies), the recovered signal will only
contain real numbers.

In [35]:

%plot -s 800,200
plot(t, y_filtered)
title('de-noised signal')

[image: _images/session10_FFT_56_0.png]

The de-noised signal is almost the same as the original noise-free
signal:

In [36]:

norm(y_filtered - y1) % almost zero

ans =
 5.6847e-15

Filter has to be symmetric

What happens if the filtering done asymmetrically?

In [37]:

F_wrong_filtered = F; % make another copy
F_wrong_filtered(76) = 0; % only do negative frequency

In [39]:

plot(abs(F_wrong_filtered), '- .')
title('asymmetrically-filtered spectrum')

[image: _images/session10_FFT_62_0.png]

The recovered signal now contains imaginary parts. That’s unphysical!

In [40]:

y_wrong_filtered = ifft(F_wrong_filtered);

In [42]:

y_wrong_filtered(1:5)' % print the first several elements

ans =
 -0.4000 - 0.1000i
 -0.4657 + 0.0000i
 -0.2663 + 0.1000i
 -0.0114 - 0.0000i
 0.0837 - 0.1000i

In [43]:

norm(imag(y_wrong_filtered)) % not zero

ans =
 0.7071

You can plot the real part only. It is something between the unfiltered
and filtered signals, i.e. the filtering here is incomplete.

In [45]:

hold on
plot(t, y, 'k')
plot(t, real(y_wrong_filtered), 'b')
plot(t, y1, 'r')
legend('signal with noise', 'incomplete fliltering', 'signal without noise')

[image: _images/session10_FFT_68_0.png]

Install Jupyter-MATLAB

Prerequisites

	We assume that you are comfortable with Linux command line. If not,
checkout out Ryans’
tutorial [http://ryanstutorials.net/linuxtutorial/commandline.php]
for example.

	We also assume that you already have MATLAB installed and working.
This tutorial is tested successfully with MATLAB R2017a on
Mac/Linux/Windows.

Install the standard Jupyter-Python notebook

Jupyter relies on Python, so the first thing is to install
Anaconda [https://www.continuum.io/downloads], a popular distribution
of scientific Python. Experienced users prefer
Miniconda [https://conda.io/miniconda.html] to only install
necessary packages, but the standard Anaconda is more convenient for
beginners, especially on Windows.

Once you have conda installed, you should test the standard IPython
notebook [https://jupyter.readthedocs.io/en/latest/running.html]. For
example, in the notebook execute

In [1]:

%%python
I am in a MATLAB kernel so need to add the above IPython magic to use the python kernel instead.
You can skip this magic in a standard python kernel
print('hello from Python')

hello from Python

On Mac/Linux

(1) Python-side configuration

Open the terminal, execute the following command to check your
installation of anaconda and python:

which conda pip python

All of them should be inside anaconda’s directory “…/anaconda3/bin”

MATLAB R2017a only interfaces with Python3.5, so we need to create a new
virtual environment:

conda create -vv -n jmatlab python=3.5 jupyter

Enter this Python environment. Stay in this environment when executing
any terminal commands (pip, python, jupyter) for rest of this
tutorial.

source activate jmatlab

Then, install the Matlab kernel for
Jupyter [https://github.com/Calysto/matlab_kernel].

pip install matlab_kernal

python -m matlab_kernel install

Check if the kernel is installed correctly

jupyter kernelspec list

You should see both Python and MATLAB.

(2) MATLAB-side configuration

Now we need to expose the MATLAB executable to
Jupyter [https://www.mathworks.com/help/matlab/matlab_external/install-the-matlab-engine-for-python.html].

Find your MATLAB directory. On Mac it will be like
“/Applications/MATLAB_R2017a.app”.

Go to the “extern/engines/python” subdirectory and install the Python
engine.

cd “/Applications/MATLAB_R2017a.app/extern/engines/python”

python setup.py install

(3) Start Jupyter notebook

cd your_working_directory

jupyter notebook

Now you should see both Python and MATLAB options when launching a new
notebook. Check if the MATLAB kernel is working by:

In [2]:

disp('hello from MATLAB')

hello from MATLAB

See Use MATLAB in Jupyter Notebooks for more
usages.

On Windows

Windows is always tricker when it comes to configuring software, but all
you need is basically translating Linux commands into Windows
commands [https://www.lemoda.net/windows/windows2unix/windows2unix.html].

Commonly used Linux/Mac <-> Windows command mappings are:

	cd folder/subfolder <-> cd folder\subfolder (type e: to
change the disk E)

	pwd <-> cd

	ls <-> dir

You might also need to set environment
variables [https://superuser.com/questions/949560/how-do-i-set-system-environment-variables-in-windows-10]
if commands like “python” and “conda” cannot be recognized. Add the
following directories to the PATH variable:

	path_to_Anaconda_dir\

	path_to_Anaconda_dir\Scripts\

All steps are exactly the same as in the Mac/Linux section. Windows is
indeed a litte bit annoying, but it doesn’t prevent Jupyter+MATLAB from
working. Please contact me if you have any troubles.

Use MATLAB in Jupyter Notebooks

Jupyter Notebook [http://jupyter.org] is a great tool for
interactive computing. It allows you to combine codes, simulation
results, and descriptions such as latex equations in a single file. It
works for many
langueges [https://github.com/jupyter/jupyter/wiki/Jupyter-kernels]
including MATLAB, the choice of this class.

For installation, see Install
Jupyter-MATLAB.

Jupyter basics

The most commonly used Jupyter commands are

	enter – (in command mode) enter edit mode

	shift+enter – (in edit mode) execute current cell

	esc – (in edit mode) enter command mode, so you can use arrow keys
to move to other cells

	b – (in command mode) insert empty cell below

	x – (in command mode) cut current cell

	v – (in command mode) paste the cell you’ve cut

	esc+m/y – change current code cell to markdown cell / reverse

For all commands see “Help” - “Keyboard shortcuts” in the toolbar.

Printing formats

The default output format is “loose”, which takes a lot of space.

In [1]:

format loose
for i=1:2
 i+1
end

ans =

 2

ans =

 3

“compact” is a better option for notebook.

In [2]:

format compact
for i=1:2
 i+1
end

ans =
 2
ans =
 3

Use help functions

“help” will print docs inside the notebook, same as Python’s help()

In [3]:

help sin

 SIN Sine of argument in radians.
 SIN(X) is the sine of the elements of X.

 See also ASIN, SIND.

 Reference page in Doc Center
 doc sin

 Other functions named sin

 codistributed/sin gpuArray/sin sym/sin

“?” will prompt a small text window, same as IPython magic “?”. (not
shown on the webpage)

In [4]:

?sin

“doc” will prompt MATLAB’s detailed documentations. (not shown on the
webpage)

In [5]:

doc sin

Plotting

Make a cool surface for plotting :)

In [6]:

tx = linspace (-8, 8, 41);
ty = tx;
[xx, yy] = meshgrid (tx, ty);
r = sqrt (xx .^ 2 + yy .^ 2) + eps;
tz = sin (r) ./ r;

The “%plot inline” magic (default) will plot inside the notebook, same
as “%matplotlib inline” in IPython.

In [7]:

%plot inline
mesh(tx, ty, tz);

[image: _images/jmatlab_use_19_0.png]

The “%plot native” magic will plot in an external window as the original
MATLAB’s interface, which allows you to rotate, zoom in/out (not shown
on the webpage).

In [8]:

%plot native
mesh(tx, ty, tz);

You can still use “close all” to close the window that was opened by
cell above.

In [9]:

close all

“?%plot” will show more plotting options including how to control the
figure size (not shown on the webpage)

In [10]:

?%plot

User-defined functions

For Python programmers it is so common to define a custom function
inside a notebook and reuse it over and over again.

A ridiculous design of MATLAB is the function has to be in a separate
file, with the function name being the file name. Local functions are
allowed since
R2016b [https://www.mathworks.com/help/matlab/matlab_prog/local-functions-in-scripts.html],
but it has many restrictions and doesn’t work in either Jupyter Notebook
or MATLAB’s own Live Script.

Inline functions

By default, matlab only allows inline functions within a script.

In [11]:

f=@(x) x^3+x-1;

We can easily find the root of such a function.

In [12]:

fzero(f,[0 1],optimset('Display','iter'))

 Func-count x f(x) Procedure
 2 1 1 initial
 3 0.5 -0.375 bisection
 4 0.636364 -0.105935 interpolation
 5 0.68491 0.00620153 interpolation
 6 0.682225 -0.000246683 interpolation
 7 0.682328 -5.43508e-07 interpolation
 8 0.682328 1.50102e-13 interpolation
 9 0.682328 0 interpolation

Zero found in the interval [0, 1]
ans =
 0.6823

Standard functions

But inline functions must only contain a single statement, too limited
in most cases.

If you try to define a standard function, it will fail:

In [13]:

function p = multi_line_func(a,b)
 a = a+1;
 b = b+1;
 p = a+b;
end

Error: Function definitions are not permitted in this context.

Fortunately, Jupyter’s “%%file” magic allows us to write a code cell to
a file.

In [14]:

%%file multi_line_func.m

function p = multi_line_func(a,b)
 % in-file comments can be added like this
 a = a+1;
 b = b+1;
 p = a+b;
end

Created file '/Users/zhuangjw/Research/Computing/personal_web/matlab_code/multi_line_func.m'.

The output file and this Notebook will be in the same directory, so you
can call it directly, as if this function is defined inside the
notebook.

In [15]:

multi_line_func(1,1)

ans =
 4

By doing this, you get Python-like working environment – create a
function, test it with several input parameters, go back to edit the
function and test it again. This
REPL [https://en.wikipedia.org/wiki/Read–eval–print_loop] workflow
will greatly speed-up your prototyping.

It might take 1~2 seconds for a function cell to take effect, because we
are writting files to disk. But you don’t need to restart the kernel
to activate any modifications to your function.

warning: you should avoid adding a MATLAB comment (start with %) at
the beginning of a cell, because it might be interpreted as Jupyter
magic and thus confuse the kernel.

Markdown cells

Markdown cells are a great way to add descriptions to your codes. Here
are examples stolen from the official document. See Jupyter notebook’s
document [http://jupyter-notebook.readthedocs.io/en/latest/examples/Notebook/Working%20With%20Markdown%20Cells.html]
for details.

Latex equations

How to write an inline eqution: $e^{i\pi} + 1 = 0$

Result: \(e^{i\pi} + 1 = 0\)

How to write a standalone equation:

$$e^x=\sum_{i=0}^\infty \frac{1}{i!}x^i$$

Result:

\[e^x=\sum_{i=0}^\infty \frac{1}{i!}x^i\]

Tables

How to make a table:

This	is
a	table

Result:

	This

	is

	a

	table

Not-executing codes

You can put your codes inside a markdown cell, to only show the codes
without executing them.

Here’s the way to get syntax highlighting for python codes:

```python
python codes
```


“MATLAB” is not a highlighting option, but you can use “OCTAVE”, an
open-source clone of MATLAB, to get the same effect.

```OCTAVE
disp("Hello World")
for i=1:2
 i+1
end
```


Result:

disp("Hello World")
for i=1:2
 i+1
end

Headings

Headings are an important way to structure your notebook.

Heading 1
Heading 2
Heading 3
Heading 4

Index

 _images/session6_differentiation_45_0.png
06

04

02

_images/session6_differentiation_61_0.png
100

o075

050

025

000

025

050

075

Lo

_images/session6_differentiation_39_0.png
01

_images/session6_differentiation_42_0.png
04

02

_images/session7_convergence_29_0.png
log(error)

forward center
10* 10*
5 10
102 &
8 0®
10° 102
10° 10! 10° 10’

log(h)

log(h)

_images/session7_convergence_42_0.png
error

gxi0® emor—h log(error) - log(h)
s T 0%
S0
4 &
]
8
2
) 100
) 0.05 01 g2
h

log(h)

_images/session7_convergence_17_0.png
error

015

01

005

forward +10° center
s
5
0.05 01) 0.05 01
h h

_images/session7_convergence_21_0.png
log(error)

forward center
10° 102
S0?
107 B
804
102 10°
102 107" 102

log(h)

log(h)

107

_images/session7_convergence_56_0.png
error

015

01

005

error - h

log(error) -- log (h)

100
3
810!
3
o
102
005 01 102 10
h

log(h)

_images/session8_stabiilty_15_0.png
true solution
—e—nh=25

12

_images/session9_PDE_15_0.png
mv
g
)
<
:
£
8
g
g

_images/session9_PDE_24_1.png
——1=0
—o—1=05

02

04

06

08

nav.xhtml

 Table of Contents

 		
 Harvard AM111 2017 Fall

 		
 Notes on Homework 1

 		
 Function as an input variable

 		
 Inline function as an input variable

 		
 Standard function as an input variable

 		
 Print truth table for half adder

 		
 Function with multiple return

 		
 Print truth table using boolean_print_TT_fn.m

 		
 Print truth table on your own

 		
 Print truth table for full adder

 		
 Lecture 2: Logic Gates & Fibonacci Numbers

 		
 Logic gates

 		
 nand gate

 		
 print truth table

 		
 build “not” gate from “nand” gate

 		
 Fibonacci Sequence

 		
 generate Fibonacci sequences

 		
 golden ratio

 		
 Lecture 4: Floats & Random Numbers

 		
 Floating point number system

 		
 About parameters

 		
 Maximum value

 		
 Minimum (absolute) value

 		
 Machine precision

 		
 Not a number

 		
 Random numbers

 		
 Lecture 5: Random Numbers & Complex Numbers

 		
 Built-in random number generator

 		
 Complex numbers

 		
 Complex number basics

 		
 Euler’s Formula

 		
 Mandelbrot set

 		
 Lecture 6: Matrix

 		
 Matrix operation basics

 		
 Built-in image for magic square

 		
 Vector norms

 		
 Conditioning

 		
 Sparse matrix

 		
 Lecture 8: Interpolation

 		
 A simple example

 		
 Polynomial interpolation

 		
 Lecture 11: Odyssey!!!

 		
 Task 1: Command line on your laptop

 		
 Preparation

 		
 Writing code in terminal

 		
 Running MATLAB interactively in terminal

 		
 Set shortcut

 		
 Running MATLAB scripts in terminal

 		
 Task 2: Command line on Odyssey

 		
 Login

 		
 Basic navigation

 		
 File transfer

 		
 Task 3: MATLAB on Odyssey

 		
 Load MATLAB

 		
 Run MATLAB

 		
 Task 4: Interactive Job on Odyssey

 		
 Task 5: Batch Job on Odyssey

 		
 Task 6: Use MATLAB-parallel on your laptop

 		
 Task 7: Use MATLAB-parallel on Odyssey interactive mode

 		
 Task 8: MATLAB-parallel as batch Job

 		
 Bonus task: make your terminal prettier

 		
 Session 1: MATLAB Functions and Scripts

 		
 3 ways to execute MATLAB codes

 		
 Executing codes directly

 		
 Writing a script

 		
 Writing a function

 		
 Multi-level functions

 		
 Session 2: Speed-up your code by vectorization

 		
 For loops

 		
 Vectorization

 		
 Performance comparision

 		
 Session 3: LU Factorization & Markov Process

 		
 LU=PA Factorization

 		
 Row operation as matrix multiplication

 		
 Get L during forward elimination

 		
 Get P during forward elimination

 		
 Markov process

 		
 Session 4: Linux Command Line

 		
 Trying Linux command on your Laptop

 		
 On Mac

 		
 On Windows

 		
 Linux Command Basics

 		
 Text Editors

 		
 Session 5: MATLAB backslash & some pitfalls

 		
 Different behaviors of backslash

 		
 Standard linear system

 		
 Incorrect shape

 		
 Over-detemined linear system

 		
 Under-determined linear system

 		
 Another multiple-behavior example

 		
 Session 6: Three ways of differentiation

 		
 Symbolic differentiation

 		
 MATLAB toolbox

 		
 Convert symbol to function

 		
 Numerical differentiation

 		
 Automatic differentiation

 		
 Theoretical explanation

 		
 Code example

 		
 Another code example: differentiating custom programs

 		
 So why use numerical differentiation?

 		
 Session 7: Error convergence of numerical methods

 		
 Error convergence of general numerical methods

 		
 Error convergence of numerical differentiation

 		
 Diagnosing the order of convergence

 		
 needs to be small

 		
 Error convergence of numerical intergration

 		
 Error convergence of ODE solving

 		
 Session 8: ODE stability; stiff system

 		
 ODE Stability

 		
 Problem statement

 		
 Explicit scheme

 		
 Implicit scheme

 		
 General form

 		
 Stiff system

 		
 Session 9: Partial differential equation

 		
 Naive advection “solver”

 		
 Space-time diagram

 		
 Advection equation

 		
 Numerical approximation to advection equation

 		
 One step integration

 		
 Multiple steps

 		
 Does decreasing time step size help?

 		
 Boundary condition

 		
 Stability

 		
 Numerical experiment

 		
 Intuitive explanation

 		
 Stability analysis (theoretical)

 		
 High-order PDE

 		
 Session 10: Fast Fourier Transform

 		
 Generate input signal

 		
 Perform Fourier transform on the signal

 		
 Full spectrum

 		
 Half-sided spectrum

 		
 Understanding units!

 		
 Deal with negative frequency

 		
 Perform inverse transform

 		
 Mix two signals

 		
 Filter out high-frequency noise

 		
 Filter has to be symmetric

 		
 Install Jupyter-MATLAB

 		
 Install the standard Jupyter-Python notebook

 		
 On Mac/Linux

 		
 (1) Python-side configuration

 		
 (2) MATLAB-side configuration

 		
 (3) Start Jupyter notebook

 		
 On Windows

 		
 Use MATLAB in Jupyter Notebooks

 		
 Jupyter basics

 		
 Printing formats

 		
 Use help functions

 		
 Plotting

 		
 User-defined functions

 		
 Inline functions

 		
 Standard functions

 		
 Markdown cells

 		
 Latex equations

 		
 Tables

 		
 Not-executing codes

 		
 Headings

_images/session9_PDE_10_0.png
—&— iitial conaition
—o— advected

02

04

06 08

_images/session9_PDE_13_0.png
ot
—e—t=3
—o—t=4

02

04

06

08

_images/lecture4_float_48_0.png
0 200 400 600 800 1000 1200 1400 1600 1800 2000

_images/session9_PDE_35_0.png
02

04

06

08

_images/lecture4_float_50_0.png
100

80

60

0

20

05 06 07 08

04

02

01

_images/session9_PDE_40_1.png

_images/jmatlab_use_19_0.png

_images/session9_PDE_27_0.png
02

04

06

08

_images/lecture2_logics_fib_23_0.png
1.8

16

14

12

10

_images/session9_PDE_31_1.png
02

04

06

08

_images/lecture5_complex_33_0.png
08

06

04

02

02

04

a5

3

2

15

10

_images/lecture5_complex_47_0.png

_images/lecture5_complex_19_0.png
15

15

_images/session9_PDE_8_0.png
02

04

06

08

_images/lecture5_complex_29_0.png
05

_images/lecture6_matrix_24_0.png

_images/session8_stabiilty_9_0.png
rue solution
—o—h=25
05 —e—n-05
o
05
Rl
o 2 4 6 s 10

12

_images/lecture6_matrix_25_0.png

_static/comment.png

_images/lecture6_matrix_57_0.png
10

1

nz =10

10

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_images/session10_FFT_12_0.png
20

10

unnormalized full spectrum

0 10

20

70

100

_static/file.png

_images/session10_FFT_18_0.png
signal amplitude

04

03

02

01

10

20 30 40 50 60

70

100

_static/minus.png

_images/lecture8_interpolation_10_0.png
0 dam

sinix)
2xr

_static/down.png

_images/lecture8_interpolation_24_0.png
o

data
interpolation

4

_images/session10_FFT_36_0.png
10

70

100

_images/session10_FFT_43_0.png
original signal

_images/session10_FFT_22_0.png
signal amplitude

08

06

04

02

(normalized) half-sided spectrum

0 10

20

30

40

_images/session10_FFT_32_0.png
signal amplitude

08

06

04

02

half-sided spectrum with correct unit of x-axis

2 3 4
frequency [Hz]

_static/ajax-loader.gif

_images/session10_FFT_52_0.png
20

10

10

20

70

100

_images/session10_FFT_56_0.png
| de-noised signal

JAVAYAVAYA

05

5

_static/up.png

_images/session10_FFT_46_0.png
20

10

spectrum with high-frequency noise

.

10

20

70

80

100

_images/session10_FFT_68_0.png
Signal with noise
——— incomplete flitering
signal without noise

_images/session2_vectorization_8_1.png
100 200 300 400 500 600 700 80O 900

100 200 300 400 500 600 700 80O 900

1000

1000

_images/session10_FFT_5_0.png
simple signal

signal
— —mean

_images/session10_FFT_62_0.png
20

10

asymmetrically-filtered spectrum

0 10

20

70

100

_images/session6_differentiation_36_0.png
02

01

_images/session6_differentiation_24_0.png
05

—0
n

3
“
15

_images/session6_differentiation_33_0.png
05

04

03

02

01

‘analytical
numerical

1

2

_static/up-pressed.png

_static/plus.png

